Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The rectifiability threshold in abelian groups

  • Note
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

For any abelian group G and integer t ≥ 2 we determine precisely the smallest possible size of a non-t-rectifiable subset of G. Specifically, assuming that G is not torsion-free, denote by p the smallest order of a non-zero element of G. We show that if a subset SG satisfies |S| ≤ ⌌log t p⌍, then S is t-isomorphic (in the sense of Freiman) to a set of integers; on the other hand, we present an example of a subset SG with |S| = ⌌log t p⌍ + 1 which is not t-isomorphic to a set of integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. F. Bilu, V. F. Lev and I. Z. Ruzsa: Rectification principles in additive number theory, Discrete Comput. Geom. (Special Issue) 19(3) (1998), 343–353.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Browkin, B. Diviš and A. Schinzel: Addition of sequences in general fields, Monatsh. Math.82(4) (1976), 261–268.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. R. Johnson and M. Newman: A surprising determinant inequality for real matrices, Math. Ann.247 (1980), 179–186.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. V. Konyagin and V. F. Lev: Combinatorics and linear algebra of Freiman’s isomorphism, Mathematika47(1–2) (2000), 39–51.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Nathanson: Additive number theory. Inverse problems and the geometry of sumsets; Graduate Texts in Mathematics 165 (1996), Springer-Verlag, New York.

    Google Scholar 

  6. A. Schinzel: An inequality for determinants with real entries, Colloq. Math.38(2) (1977/78), 319–321.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod F. Lev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev, V.F. The rectifiability threshold in abelian groups. Combinatorica 28, 491–497 (2008). https://doi.org/10.1007/s00493-008-2299-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-008-2299-8

Mathematics Subject Classification (2000)