Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal covers with Hamilton cycles in random graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A packing of a graph G with Hamilton cycles is a set of edge-disjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in G n,p a.a.s. has size ⌊δ(G n,p )/2⌋. Glebov, Krivelevich and Szabó recently initiated research on the ‘dual’ problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main result states that for \(\tfrac{{log^{117} n}} {n} \leqslant p \leqslant 1 - n^{ - 1/8}\), a.a.s. the edges of G n,p can be covered by ⌈Δ (G n,p )/2⌉ Hamilton cycles. This is clearly optimal and improves an approximate result of Glebov, Krivelevich and Szabó, which holds for pn −1+ɛ. Our proof is based on a result of Knox, Kühn and Osthus on packing Hamilton cycles in pseudorandom graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai, J. Komlós and E. Szemerédi: The first occurrence of Hamilton cycles in random graphs, Annals of Discrete Mathematics 27 (1985), 173–178.

    Google Scholar 

  2. S. Ben-Shimon, M. Krivelevich and B. Sudakov: On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs, SIAM J. Discrete Mathematics 25 (2011), 1176–1193.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Bollobás: The evolution of sparse graphs, Graph Theory and Combinatorics, Academic Press, London (1984), 35–57.

    Google Scholar 

  4. B. Bollobás: Random Graphs, Academic Press, London, 1985.

    MATH  Google Scholar 

  5. B. Bollobás and A. Frieze: On matchings and Hamiltonian cycles in random graphs, Random graphs’ 83 (Poznan, 1983), North-Holland Math. Stud., 118, North-Holland, Amsterdam (1985), 23–46.

    Google Scholar 

  6. A. Frieze and M. Krivelevich: On packing Hamilton cycles in ɛ-regular graphs, J. Combin. Theory B 94 (2005), 159–172.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Frieze and M. Krivelevich: On two Hamilton cycle problems in random graphs, Israel J. Math. 166 (2008), 221–234.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Glebov, M. Krivelevich and T. Szabó: On covering expander graphs by Hamilton cycles, Random Structures & Algorithms 44 (2014), 183–200.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Hefetz, M. Krivelevich and T. Szabó: Hamilton cycles in highly connected and expanding graphs, Combinatorica 29 (2009), 547–568.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Janson, T. Łuczak and A. Ruciński: Random graphs, Wiley-Interscience, 2000.

    Book  MATH  Google Scholar 

  11. F. Knox, D. Kühn and D. Osthus: Approximate Hamilton decompositions of random graphs, Random Structures & Algorithms 40 (2012), 133–149.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Knox, D. Kühn and D. Osthus: Edge-disjoint Hamilton cycles in random graphs, Random Structures & Algorithms (to appear).

  13. M. Krivelevich and W. Samotij: Optimal packings of Hamilton cycles in sparse random graphs, SIAM J. Discrete Mathematics 26 (2012), 964–982.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Kühn and D. Osthus: Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments, Advances in Mathematics 237 (2013), 62–146.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Kühn and D. Osthus: Hamilton decompositions of regular expanders: applications, J. Combin. Theory B 104 (2014), 1–27.

    Article  MATH  Google Scholar 

  16. V. Rödl: On a packing and covering problem, European J. Combin. 6 (1985), 69–78.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Thomason: Pseudo-random graphs, Annals of Discrete Mathematics 33 (1987), 307–331.

    MathSciNet  Google Scholar 

  18. W. Tutte: The factors of graphs, Canad. J. Math. 4 (1952), 314–328.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Tutte: A short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954), 347–352.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Hefetz.

Additional information

The research leading to these results was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement n. 258345 (D. Kühn).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hefetz, D., Kühn, D., Lapinskas, J. et al. Optimal covers with Hamilton cycles in random graphs. Combinatorica 34, 573–596 (2014). https://doi.org/10.1007/s00493-014-2956-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-014-2956-z

Mathematics Subject Classification (2000)