Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Odd circuits in dense binary matroids

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We show that, for each real number α>0 and odd integer k≥5, there is an integer c such that, if M is a simple binary matroid with |M|≥α2r(M) and with no k-element circuit, then M has critical number at most c. The result is an easy application of a regularity lemma for finite abelian groups due to Green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Crapo and G.-C. Rota: On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary edition, MIT Press, Cambridge, 1970.

    MATH  Google Scholar 

  2. P. Erdős and M. Simonovits: On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323–334.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Furstenberg and Y. Katznelson: IP-sets, Szemerćdi’s Theorem and Ramsey Theory, Bull. Amer. Math. Soc. (N.S.) 14 (1986), 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Green: A Szemeredi-type regularity lemma in abelian groups, with applications, Geometric & Functional Analysis GAFA 15 (2005), 340–376.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. G. Oxley: Matroid Theory, Oxford University Press, New York (2011).

    Book  MATH  Google Scholar 

  6. J. G. Oxley: The contributions of Dominic Welsh to matroid theory, in: Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford University Press, 2007.

    MATH  Google Scholar 

  7. T. C. Tao and V. H. Vu: Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  8. C. Thomassen: On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), 241–243.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nelson.

Additional information

This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geelen, J., Nelson, P. Odd circuits in dense binary matroids. Combinatorica 37, 41–47 (2017). https://doi.org/10.1007/s00493-015-3237-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-3237-1

Mathematics Subject Classification (2000)