Abstract
For given integers k and r, the Folkman number f(k;r) is the smallest number of vertices in a graph G which contains no clique on k+1 vertices, yet for every partition of its edges into r parts, some part contains a clique of order k. The existence (finiteness) of Folkman numbers was established by Folkman (1970) for r=2 and by Nešetřil and Rödl (1976) for arbitrary r, but these proofs led to very weak upper bounds on f(k;r).
Recently, Conlon and Gowers and independently the authors obtained a doubly exponential bound on f(k;2). Here, we establish a further improvement by showing an upper bound on f(k;r) which is exponential in a polynomial of k and r. This is comparable to the known lower bound 2Ω(rk). Our proof relies on a recent result of Saxton and Thomason (or, alternatively, on a recent result of Balogh, Morris, and Samotij) from which we deduce a quantitative version of Ramsey’s theorem in random graphs.
Similar content being viewed by others
References
J. Balogh, R. Morris and W. Samotij: Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.
D. Conlon and T. Gowers: An upper bound for Folkman numbers, preprint.
D. Conlon and T. Gowers: Combinatorial theorems in sparse random sets, submitted.
A. Dudek and R. Ramadurai: Some Remarks on Vertex Folkman Numbers For Hypergraphs, Discrete Mathematics 312 (2012), 2952–2957.
A. Dudek and V. Rödl: On the Folkman Number f(2;3; 4), Experimental Mathematics 17 (2008), 63–67.
A. Dudek and V. Rödl: An Almost Quadratic Bound on Vertex Folkman Numbers, Journal of Combinatorial Theory, Ser. B 100 (2010), 132–140.
P. Erdős: Problems and results in finite and infinite graphs, Proc. of the Second Czechoslovak International Symposium, ed. M. Fiedler, Academia Praha (1975), 183–192.
P. Erdős and A. Hajnal: Problems 2-3, J. Combin. Th. 2 (1967), 104–105.
E. Friedgut, V. Rödl and M. Schacht: Ramsey properties of random discrete structures, Random Structures Algorithms 37(4) (2010), 407–436.
J. Folkman: Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.
A. Frieze and M. Karoński: Introduction to Random Graphs, to appear.
R. L. Graham: On edge-wise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Th. 4 (1968), 300.
S. Janson, T. Luczak and A. Ruciński: Random Graphs, John Wiley and Sons, New York (2000).
H. Lefmann: A note on Ramsey numbers, Studia Sci. Math. Hungar. 22(1–4) (1987), 445–446.
R. Nenadov and A. Steger: A short proof of the random Ramsey theorem, Comb. Prob. Comp. 25 (2016), 130–144.
N. Nenov: An example of 15-vertex (3,3)-Ramsey graph with the clique number 4, C.R. Acad. Bulg. Sci. 34 (1981), 1487–1489.
J. Nešetřil and V. Rödl: The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Th. Ser. B 20 (1976), 243–249.
K. Piwakowski, S.P. Radziszowski and S Urbański: Computation of the Folkman number Fe(3,3;5), J. Graph Theory 32 (1999), 41–49.
S. P. Radziszowski and X. Xu: On the Most Wanted Folkman Graph, Geocombinatiorics 16 (2007), 367–381.
V. Rödl and A. Ruciński: Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.
V. Rödl and A. Ruciński: Ramsey properties of random hypergraphs, Journal Combin. Theory, Series A 81 (1998), 1–33.
V. Rödl, A. Ruciński and M. Schacht: Ramsey properties of random k-partite, k-uniform hypergraphs, SIAM J. of Discrete Math. 21(2) (2007), 442–460.
V. Rödl, A. Ruciński and M. Schacht: Ramsey properties of random graphs and Folkman numbers, submitted.
D. Saxton and A. Thomason: Hypergraph containers, Inventiones Mathematicae 201 (2015), 925–992.
Th. Skolem: Ein kombinatorischer Satz mit Anwendung auf ein logisches Entscheidungsproblem, Fundamenta Mathematicae 20 (1933), 254–261.
S. Urbański: Remarks on 15-vertex (3;3)-Ramsey graphs not containing K 5, Discuss. Math. Graph Theory 16 (1996), 173–179.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rödl, V., Ruciński, A. & Schacht, M. An exponential-type upper bound for Folkman numbers. Combinatorica 37, 767–784 (2017). https://doi.org/10.1007/s00493-015-3298-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-015-3298-1