Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

From exact observability to identification of singular sources

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We give general results about the identifiability of source terms for infinite-dimensional linear systems that are exactly observable. We allow the source term to be unbounded, i.e., not contained in the state space, but in one of a sequence of extended spaces. We show that the operator from the source term to the output function is bounded from below, in suitable norms. We apply the main result to a system described by the wave equation in a bounded \(n\)-dimensional domain. We derive results of independent interest concerning the range of the input map of an exactly controllable system, when restricted to various spaces of smooth input functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C, Silvestre AL, Takahashi T, Tucsnak M (2009) Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation. SIAM J. Control and Optim. 48:1632–1659

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control and Optim. 30:1024–1065

    Article  MATH  MathSciNet  Google Scholar 

  3. Burq N, Gérard P (1997) Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325:749–752

    Article  MATH  Google Scholar 

  4. R. Cipolatti and M. Yamamoto, An inverse problem for a wave equation with arbitrary initial values and a finite time of observations, Inverse Problems 27 (2011), 095006, 15 pages.

  5. Dehman B, Lebeau G (2009) Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control and Optim. 48:521–550

    Article  MATH  MathSciNet  Google Scholar 

  6. El Badia A, Ha-Duong T (2001) Determination of point wave sources by boundary measurements. Inverse Problems 17:1127–1139

    Article  MATH  MathSciNet  Google Scholar 

  7. Ervedoza S, Zuazua E (2010) A systematic method for building smooth controls for smooth data, Discrete & Contin. Dynamical Systems Ser. B 14:1–27

    MathSciNet  Google Scholar 

  8. L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.

  9. I. Gohberg and I. Feldman, Convolution Equations and Projection Methods for their Solution, American Math. Society, Translations of Math. Monographs, Vol. 41, Providence, RI, 1974.

  10. Komornik V, Yamamoto M (2002) Upper and lower estimates in determining point sources in a wave equation. Inverse Problems 18:319–329

    Article  MATH  MathSciNet  Google Scholar 

  11. Komornik V, Yamamoto M (2003) Corrigendum: “Upper and lower estimates in determining point sources in a wave equation”. Inverse Problems 19:999

    Article  MathSciNet  Google Scholar 

  12. Komornik V, Yamamoto M (2005) Estimation of point sources and applications to inverse problems. Inverse Problems 21:2051–2070

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 1989.

  14. Latushkin Y, Randolph T, Schnaubelt R (2005) Regularization and frequency domain stability pf well-posed systems, Math. of Control. Signals and Systems 17:128–151

    Article  MATH  MathSciNet  Google Scholar 

  15. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, Vol. 8, Masson, Paris, 1988 (with a chapter by E. Zuazua, and a chapter by C. Bardos, G. Lebeau and J. Rauch).

  16. Y. Meyer, Étude d’un modèle mathématique issu du contrôle des structures spatiales déformables, in Nonlinear partial differential equations and their applications, Collège de France seminar, Vol. VII, Paris 1983–1984, pp. 234–242, Res. Notes in Math. Vol. 122, Pitman, Boston, MA, 1985.

  17. Puel J-P, Yamamoto M (1995) Applications de la contrôlabilité exacte à quelques problèmes inverses hyperboliques. C. R. Acad. Sci. Paris Sér. I Math. 320:1171–1176

    MATH  MathSciNet  Google Scholar 

  18. Triggiani R (1993) Interior and boundary regularity of the wave equation with interior point control. Differential Integral Equations 6:111–129

    MATH  MathSciNet  Google Scholar 

  19. Tucsnak M, Weiss G (2000) Simultaneous exact controllability and some applications. SIAM J. Control and Optim. 38:1408–1427

    Article  MATH  MathSciNet  Google Scholar 

  20. Tucsnak M, Weiss G (2009) Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  21. Weiss AJ (2004) Direct position determination of narrowband radio frequency transmitters. IEEE Signal Processing Letters 11:513–516

    Article  Google Scholar 

  22. Weiss G (1989) Admissibility of unbounded control operators. SIAM J. Control and Optim. 27:527–545

    Article  MATH  MathSciNet  Google Scholar 

  23. Weiss G (1989) Admissible observation operators for linear semigroups. Israel J. Math. 65:17–43

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Tucsnak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucsnak, M., Weiss, G. From exact observability to identification of singular sources. Math. Control Signals Syst. 27, 1–21 (2015). https://doi.org/10.1007/s00498-014-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-014-0132-z

Keywords