Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semirings and pseudo MV algebras

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we describe the relationships between pseudo MV algebras and semirings. We also give definitions of automata on lattice ordered semirings, prove that the family of K-Languages is closed under union, and discuss the conditions for the closedness of families of K-languages under intersection, generalized intersection and reversal operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baudot R (2000) Non-commutative programming language NoClog. In: Symposium LICS, Santa Barbara (Short Presentations), pp 3–9

  • Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490

    Article  MATH  Google Scholar 

  • Chang CC (1959) A new proof of the completeness of the Lukasiewicz axioms. Trans Am Math Soc 93:74–80

    Article  MATH  Google Scholar 

  • Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo BL algebras: part I. Multi Val Logic 8:673–714

    MATH  MathSciNet  Google Scholar 

  • Di Nola A, Gerla B (2004) Algebras of lukasiewicz logic and their semiring reducts. Proceedings of the conference on idempotent mathematics and mathematical physics Litvinov GL, Maslov VP (eds)

  • Dvurecenskij A (2002) Pseudo MV algebras are intervals in l-groups. J Aust Math Soc 70:427–445

    Article  MathSciNet  Google Scholar 

  • Eilenberg S (1974) Automata, languages, and machines. Academic, New York

    MATH  Google Scholar 

  • Georgescu G, Iorgulescu A (2001) Pseudo-MV algebras. Multi Valued Logic 6:95–135

    MATH  MathSciNet  Google Scholar 

  • Gerla B (2003) Many-valued logic and semirings. Neural Netw worlds 5:467–480

    Google Scholar 

  • Gerla B (2004) Automata over MV algebras. In: Proceeding of the 34th international symposium on multiple-valued logic, pp 49–54

  • Hajek P (1998) Basic fuzzy logic and BL-algebras. Soft Comput 2:124–128

    Google Scholar 

  • Hajek P (2003) Observations on non-commutative fuzzy logic. Soft Comput 8:38–43

    MATH  Google Scholar 

  • Krob D (1998) Some automata-theoretic aspects of min–max-plus semirings. In: Gunawardena J (ed) Idempotency. Cambridge University Press, Cambridge, pp 70–79

    Google Scholar 

  • Simon I (1988) Recognizable sets with multiplicities in the tropical semiring. In: Chytil MP et al. (eds) Lect Notes Comput Sc 324:107–120

  • Rachunek J (2002) A non-commutative generalized of MV-algebras. Czechoslovak Math J 52:255–273

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Lu, R. Semirings and pseudo MV algebras. Soft Comput 11, 847–853 (2007). https://doi.org/10.1007/s00500-006-0136-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-006-0136-9

Keywords