Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning based brain emotional intelligence as a new aspect for development of an alarm system

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The multi criteria and purposeful prediction approach has been introduced and is implemented by the fast and efficient behavioral based brain emotional learning method. On the other side, the emotional learning from brain model has shown good performance and is characterized by high generalization property. New approach is developed to deal with low computational and memory resources and can be used with the largest available data sets. The scope of paper is to reveal the advantages of emotional learning interpretations of brain as a purposeful forecasting system designed to warning; and to make a fair comparison between the successful neural (MLP) and neurofuzzy (ANFIS) approaches in their best structures and according to prediction accuracy, generalization, and computational complexity. The auroral electrojet (AE) index are used as practical examples of chaotic time series and introduced method used to make predictions and warning of geomagnetic disturbances and geomagnetic storms based on AE index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aggleton JP (eds) (1992). The Amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York

    Google Scholar 

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah N, Habel U, Schneider F and Zilles K (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210(5–6): 343–352

    Article  Google Scholar 

  • Babaie T, Karimizandi R, Lucas C (2005) A spectral analysis and neurofuzzy approach to prediction of geomagnetic activity. In: 8th conference of Intelligent Systems, Tehran, Iran

  • Babaie T, Karimizandi R, Lucas C (2005) A neuro-emotional approach to prediction. In: Workshop on cognitive sciene and neurophilosophi. Institude Philosophyof Iran, Tehran, Iran, pp 3–6

  • Babaie T, Karimizandi R and Lucas C (2006). Prediction of solar conditions by emotional learning. Intell Data Anal 10(6): 583–597

    Google Scholar 

  • Baker DN (1986). Statistical analyses in the study of solar wind-magnetosphere coupling. In: Kamide, JA and Slavin, Y (eds) Solar wind-magnetosphere coupling, pp 17–38. Terra Scientific Pub, Tokyo

    Google Scholar 

  • Barto A, Sutton R and Watkins C (1990). Learning and sequential decision making, in Learning and Computational Neuroscience. MIT, Cambridge

    Google Scholar 

  • Bay JS (1997) Behavior learning in large homogeneous populations of robots. In: IASTED International Conference on Artificial Intelligence and Soft Computing, pp 137–140

  • Boberg F, Wintoft P and Lundstedt H (2000). Real time Kp predictions from solar wind data using neural networks. Phys Chem Earth 25(4): 275–280

    Google Scholar 

  • Broca P (1878). Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique. Rev Anthropol 1: 385–498

    Google Scholar 

  • Chen S, Wu Y and Luk BL (1999). Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans Neural Netw 10(5): 1239–1243

    Article  Google Scholar 

  • Detman TR and Vassiliadis D (1997). Review of techniques for magnetic storm forecasting. In: Tsurutani, BT, Gonzalez, WD, Kamide, Y and Arballo, JK (eds) Magnetic storms, pp 253–266. AGU, Washington DC

    Google Scholar 

  • Fatourechi M, Lucas C, Khaki Sedigh A (2001) Reducing control effort by means of emotional learning. In: Proceedings of 9th Iranian conference on Electrical Engineering, ICEE’01, Tehran, Iran (41):1–8

  • Freeman J, Nagai A, Reiff P, Denig W, Gussenhoven Shea S, Heinermann M, Rich F, Hairston M (1994) The use of neural networks to predict magnetospheric parameters for input to a magnetospheric forecast model. In: Joselyn J, Lundstedt H, Trollinger (eds) Artificial intelligence applications in solar terrestrial physics, 167. Natl Oceanic and Atmos Admin, Boulder, Colorado

  • Gholipour A, Abbaspour A, Araabi BN, Caro Lucas (2003) Enhancements in the prediction of solar activity by locally linear model tree. In: Proceedings of MIC2003: 22nd international conference on Modeling. Identification and Control, Innsbruck, Austria, pp 158–161

  • Gholipour A, Araabi B and Lucas C (2006). Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process Lett 24(3): 217–239(23)

    Article  Google Scholar 

  • Gleisner H (2000). Solar wind and Geomagnetic activity: predictions using neural networks. Lund University, Lund, PhD thesis

    Google Scholar 

  • Gleisner H, Lundstedt H and Wintoft P (1996). Predicting geomagnetic storms from solar wind data using time delay neural networks. Ann Geophys 14: 679–686

    Article  Google Scholar 

  • Gleisner H and Lundstedt H (1999). Ring current influence on auroral electrojet predictions. Ann Geophys 17: 1268–1275

    Article  Google Scholar 

  • Gleisner H and Lundstedt H (1997). Response of the auroral electrojets to the solar wind modeled with neural networks. J Geophys Res 102: 14269–14278

    Article  Google Scholar 

  • Goleman D (1995). Emotional intelligence. Bantam Books, New York

    Google Scholar 

  • Haykin S (1998). Neural networks—a comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Haykin S (1999). Neural networks: a comprehensive foundation. Prentice-Hall, NewYork

    MATH  Google Scholar 

  • Hernandez JV, Tajima T and Horton W (1993). Neural net forecasting for geomagnetic activity. Geophys Res Lett 20(23): 2707–2710

    Article  Google Scholar 

  • Horton W (1997). Chaos and Structures in the Magnetosphere. Phys Rep 283: 265–302

    Article  Google Scholar 

  • Horton W, Doxas I, Goode B and Cary J (1998). A low-dimensional dynamical model for the solar wind driven geotail-ionosphere system. J Geophys Res 103(A3): 4561–4572

    Article  Google Scholar 

  • Horton W, Smith JP, Weigel R, Crabtree C, Doxas I, Goode B and Cary J (1999). The solar wind driven magnetosphere-ionosphere as a complex dynamical system. Phys Plasmas 6(11): 4178–4184

    Article  Google Scholar 

  • Hussain A (2002) Physical time-series prediction using second-order pipelined recurrent neural network. IEEE international conference on Artificial Intelligence Systems (ICAIS 2002), 2002, pp 219–223

  • Inoue K, Kawabata K, Kobayashi H (1996) On a decision making system with emotion. In: Proceedings of the 5th IEEE international workshop on robot and human communication, pp 461–465

  • Inoue K, Kawabata K, Kobayashi H (1996) On a decision making system with emotion. In: Proceedings 5th IEEE international workshop on Robot and Human Communication, pp 461–465

  • Iyemori T, Maeda H and Kamei T (1979). Impulse response of geomagnetic indices to interplanetary magnetic fields. J Geomag Geoelectr 31: 1–9

    Google Scholar 

  • Izeman AJ and Wolf JR (1985). The Zurich sunspot relative numbers. Math Intell 7(1): 27–33

    Article  Google Scholar 

  • Joselyn JA (1995). Geomagnetic activity forecasting: the state of the art. Rev Geophys 33: 383

    Article  Google Scholar 

  • Jang J-S, sun C-T and Mizutani E (1997). Neuro-fuzzy and soft computing. Prentice-Hall, NewYork

    Google Scholar 

  • Kamide Y, Yokoyama N, Gonzalez W, Tsurutani BT, Daglis IA, Brekke A and Masuda S (1998). Two step development of geomagnetic storms. J Geophys Res 103: 6917–6921

    Article  Google Scholar 

  • Kandel A (1988). Fuzzy expert systems. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Kandel A (eds) (1992). Fuzzy expert systems. CRC, Boca Raton

    Google Scholar 

  • LeDoux JE (1992). Emotion and the Amygdala. In: Aggleton, JP (eds) The Amygdala:neurobiological aspects of emotion, memory and mental dysfunction, pp 339–351. Wiley-Liss, New York

    Google Scholar 

  • Lee C-C (1990a). Fuzzy logic in control systems: fuzzy logic controller-part 1. IEEE Trans Syst Man Cybern 20(2): 404–418

    Article  MATH  Google Scholar 

  • Lee C-C (1990b). Fuzzy logic in control systems: fuzzy logic controller-part 2. IEEE Trans Syst Man Cybern 20(2): 419–435

    Article  MATH  Google Scholar 

  • Leung H, Lo T and Wang S (2001). Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans Neural Netw 12(5): 1163–1172

    Article  Google Scholar 

  • Lorenz EN (1963). Deterministic non-periodic flow. J Atmos Sci 20: 130–141

    Article  Google Scholar 

  • Lucas C, Abbaspour A, Gholipour A, Araabi BN and Fatourechi M (2003). Enhancing the performance of neurofuzzy predictors by emotional learning algorithm. Informatica 27(2): 165–174

    Google Scholar 

  • Lundstedt H (1992). Neural networks and predictions of solar-terrestrial effects. Planet Space Sci 40: 457–464

    Article  Google Scholar 

  • Lundstedt H (1998) AI Techniques in Geomagnetic Storm Forecasting. In: Magnetic Storms, Geophysical Monograph 98, AGU

  • Lundstedt H (1998) Lund space weather model: status and future plans. In: Proceedings of the second workshop on AI Applications in Solar-Terrestrial Physics, July 29–31, 1997, Lund, Sweden, ESA WPP-148

  • Lundstedt H and Wintoft P (1994). Prediction of geomagnetic storms from solarwind data with the use of a neural network. Ann Geophys 12: 19–24

    Article  Google Scholar 

  • Maclean PD (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4(4): 407–18

    Article  Google Scholar 

  • Moren J (2002). Emotion and learning: a computational model of the amygdala. Lund University, Lund, PhD thesis

    Google Scholar 

  • Moren J and Balkenius C (2000). A computational model of emotional learning in the amygdale. In: Mayer, JA, Berthoz, A, Floreano, D, Roitblat, HL and Wilson, SW (eds) From animals to animats 6, pp 383–391. MIT, Cambridge

    Google Scholar 

  • Papez JW (1995). A proposed mechanism of emotion, 1937. J Neuropsychiatry Clin Neurosci 7(1): 103–12

    Google Scholar 

  • Pedrycz W (1989). Fuzzy control and fuzzy systems. Wiley, New York

    MATH  Google Scholar 

  • Perlovsky LI (1999) Emotions, learning and control. In: Proceedings of IEEE international symposium on Intelligent control/Intelligent systems and semiotics, Cambridge, MA, pp 132–137

  • Picard RW, Vyzas E and Healey J (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23(10): 1175–1191

    Article  Google Scholar 

  • Picard RW, Vyzas E and Healey J (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23(10): 1175–1191

    Article  Google Scholar 

  • Roger Jang J-S (1992). Self-learning fuzzy controller based on temporal back-propagation. IEEE Trans Neural Netw 3: 714–723

    Article  Google Scholar 

  • Roger Jang J-S (1993). ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23: 665–685

    Article  Google Scholar 

  • Rolls ET (1986). A theory of emotion and its application to understanding the neural basis of emotion. In: Oomura, Y (eds) Emotions: neural and chemical control, pp 325–344. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Rolls ET (1995). A theory of emotion and consciousness and its application to understanding the neural basis of emotion. In: Michael Gazzaniga, S (eds) The cognitive neurosciences, pp 1091–1106. MIT, Cambridge

    Google Scholar 

  • Schatten KH and Pesnell WD (1993). An early solar dynamo prediction: Cycle 23 ~ Cycle 22. Geophysical Res Lett 20: 2257–2278

    Article  Google Scholar 

  • Sloman A (1981) Why robots will have emotions. In: Proceedings University of Sussex, UK

  • Sugeno M (eds) (1985). Industrial applications of fuzzy control. Elsevier, Amsterdam

    Google Scholar 

  • Sutton RS (1989). Learning to predict by the method of temporal differences. Mach Learn 3: 9–44

    Google Scholar 

  • Sutton RS and Barto AG (1998). Introduction to reinforcement learning. MIT, Cambridge

    Google Scholar 

  • Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator’s control actions. In: Proceedings of the IFAC Symp on Fuzzy Information, Knowledge Representation and Decision Analysis, pp 55–60

  • Takagi T and Sugeno M (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15: 116–132

    MATH  Google Scholar 

  • Takalo J and Timonen J (1999). Neural network prediction of the AE index from the PC index. Physics and chemistry of the earth. Part C. Solar Terr Planet Sci 24(1): 89–92(4)

    Google Scholar 

  • Takalo J and Timonen J (1997). Neural network prediction of AE data. Geophys Res Lett 24(19): 2403–2406

    Article  Google Scholar 

  • Thompson RJ (1993). A technique for predicting the amplitude of solar cycle. Solar Phys 148: 383

    Article  Google Scholar 

  • Uluyol O, Ragheb M, Ray SR (1998) Local output Gamma Feedback neural network. In: Proceedings of the IEEE international conference on Neural Networks: IJCNN (1):337–342

  • Vassiliadis D (2000). System identification, modeling and prediction for space weather environments. IEEE Trans Plasma Sci 28(6): 1944–1955

    Article  MathSciNet  Google Scholar 

  • Vassiliadis D, Klimas AJ, Baker DN and Roberts DA (1995). Adescription of solar wind magnetosphere coupling based on nonlinear filters. J Geophys Res 100: 3495–3512

    Article  Google Scholar 

  • Vassiliadis D, Sharma AS, Eastman TE and Papadopulos K (1990). Low-dimensional chaos in magnetospheric activity from AE time series. Geophys Res Lett 17(11): 1841–1844

    Article  Google Scholar 

  • Ventura R, Pinto Ferreira C (1999) Emotion based control systems. In: Proceedings of IEEE international symposium on Intelligent control/Intelligent systems and semiotics. Cambridge, MA, pp 64–66

  • Watkins C (1989). Learning from delayed rewards. University of Cambridge, England, PhD thesis

    Google Scholar 

  • Weigend A, Berman BH and Rumelhart D (1990). Predicting the future: a connectionist approach. Int J Neural Syst 1(3): 193–209

    Article  Google Scholar 

  • Wu JG (1997). Dynamic neural network studies of solar wind magnetosphere coupling. Lund Observatory, Lund, PhD thesis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Babaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaie, T., Karimizandi, R. & Lucas, C. Learning based brain emotional intelligence as a new aspect for development of an alarm system. Soft Comput 12, 857–873 (2008). https://doi.org/10.1007/s00500-007-0258-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-007-0258-8

Keywords