Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MSAFC: matrix subspace analysis with fuzzy clustering ability

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, based on the maximum margin criterion (MMC) together with the fuzzy clustering and the tensor theory, a novel matrix based fuzzy maximum margin criterion (MFMMC) is proposed and based upon which a matrix subspace analysis method with fuzzy clustering ability (MSAFC) is derived. Besides, according to the intuitive geometry, a proper method of setting the adjustable parameter \(\gamma \) in the proposed criterion MFMMC is given and its rationale is provided. The proposed method MSAFC can simultaneously realize unsupervised feature extraction and fuzzy clustering for matrix data (e.g. image data). As to the running efficiency of MSAFC, a two-directional orthogonal method of dealing with matrix data without any iteration is developed to improve it. Experimental results on UCI datasets, hand-written digit datasets, face image datasets and gene datasets show the distinctive performance of MSAFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Although it is also called as 2D-FLD, it is a two-direction two-dimensional feature extraction method in nature. In order to distinguish it from other single-direction two-dimensional feature extraction methods, we take it as \({\hbox {(2D)}}^{2}{\hbox {LDA}}\) in this paper.

References

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Bian ZQ, Zhang XG (2001) Pattern Recogn. TsingHua University Press, Beijing

    Google Scholar 

  • Blake CL, Merz CJ (1998) UCI Rrepository of Machine Learning Databases”, Irvine, CA: University of California, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html

  • Chen SC, Zhu YL, Zhang DQ (2005) Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA. Pattern Recogn Lett 26:1157–1167

    Article  Google Scholar 

  • Choi JY, Park MS (2009) Theoretical analysis on feature extraction capability of class-augmented PCA. Pattern Recogn 42(2):2353–2362

    MATH  Google Scholar 

  • Chung FL, Wang ST et al (2006) Clustering analysis of gene expression data based on semi-supervised clustering algorithm. Soft Comput 10(5):981–994

    Article  MATH  Google Scholar 

  • Comon P, Jutten C (2010) Handbook of blind source separation, independent component analysis and applications. Academic Press, New York

  • Cui GQ, Gao W (2005) Face recognition based on two-layer generate virtual data for SVM. Chin J Comput 28(3):368–376

    MathSciNet  Google Scholar 

  • Daizhan Cg, June F, Hongli L (2013) Solving fuzzy relational equations via semi-tensor product. IEEE Trans Fuzzy Syst on-line available now

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Google Scholar 

  • Fu Y, Yuan JS, Li Z, Huang TS, Wu Y (2007) Query-driven locally adaptive Fisher faces and expert-model for face recognition. In: Proceedings of the International Conference on Image Processing 2007, pp 141–144

  • Gao J, Wang ST (2009) Fuzzy maximum scatter difference discriminant criterion based clustering algorithm. J Softw 20(11):2939–2949

    Article  MATH  Google Scholar 

  • Hsieh P, Wang D, Hsu C (2006) A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information. IEEE Trans Pattern Anal Mach Intell 28(6):223–235

    Article  Google Scholar 

  • Jain A, Dubes R (1988) Algorithms for clustering data. Prentice Hall, Upper Saddle River

  • Jing XY, Wong HS, Zhang D (2006) Face recognition based on 2D Fisherface approach. Pattern Recogn 39:707–710

    Article  MATH  Google Scholar 

  • Jolliffe IT (1986) Principal Component Analysis. Springer, New York

    Book  Google Scholar 

  • Kim YD, Choi S (2007) Color face tensor factorization and slicing for illumination-robust recognition. In: Proceedings of intrenational conference on biometrics, pp 19–28

  • Kim E, Park M, Kim S, Park M (1998) A transformed input-domain approach to fuzzy modeling. IEEE Trans Fuzzy Syst 6(4):596–604

    Article  Google Scholar 

  • Kw KC, Pedry W (2005) Face recognition using a fuzzy Fisher classifier. Pattern Recogn 38(10):1717–1732

    Article  Google Scholar 

  • Lei Z, Chu R, He R, Liao S, Li SZ (2007) Face recognition by discriminant analysis with Gabor tensor representation. In: Proceedings of international conference on biometrics, pp 87–95

  • Li M, Yuan B (2005) 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern RecognLett 26:527–532

    Article  Google Scholar 

  • Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157– 165

    Article  Google Scholar 

  • Li J, Zhang L, Tao D, Sun H, Zhao D (2009) A prior neurophysiologic knowledge free tensor-based scheme for single trial egg classification. IEEE Trans Neural Syst Rehabilit Eng 17(2):107–115

    Article  Google Scholar 

  • Li CH, Kuo BC, Lin CT (2011) LDA-based clustering algorithm and its application to an unsupervised feature extraction. IEEE Trans Fuzzy Syst 19(1):152–162

    Article  Google Scholar 

  • Liu J, Tan XY, Zhang DQ (2007) Comments on efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 18(6):1862–1864

    Article  Google Scholar 

  • Lu HP, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Article  Google Scholar 

  • Lu HP, Plataniotis KN, Venetsanopoulos AN (2009) Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans Neural Netw 20(1):103– 123

    Article  Google Scholar 

  • Lu HP, Plataniotis KN, Venetsanopoulos AN (2011) A survey of multilinear subspace learning for tensor data. Pattern Recogn 44(7):1540–1551

    Article  MATH  Google Scholar 

  • Martínez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  • Panagakis Y, Kotropoulos C, Arce GR (2010) Non-negative multilinear principal component analysis of auditory temporal modulations for music genre classification. In: IEEE transaction on audio, speech, and language processing 18(3):576–588

  • Peng J, Zhang P, Riedel N (2008) Discriminant learning analysis. IEEE Trans Syst Man Cybern Part B 38(6):1614–1625

    Google Scholar 

  • Ren CX, Dai DQ (2010) Incremental learning of bidirectional principal components for face recognition. Pattern Recogn 143(1):318–330

    Article  Google Scholar 

  • Sirovich L, Kirby M (1987) Low-dimensional procedure for characterization of human faces. J Optical Soc Am 4:519–524

    Article  Google Scholar 

  • Song FX, Zhang D, Yang JY, Gao XM (2006) Adaptive classication algorithm based on maximum scatter difference discriminant criterion. Acta Automatica Sinica 32(2):541–549

    Google Scholar 

  • Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  • Wang JG, Yang WK, Lin YS, Yang JY (2008) Two-directional maximum scatter difference discriminant analysis for face recognition. Neurocomputing 72(1–3):352–358

    Google Scholar 

  • Wang X, Tang X (2004) A unified framework for subspace face recognition. IEEE Trans Pattern Anal Mach Intell 26(9):1223–1228

    Google Scholar 

  • Wang Z, Chen SC, Liu J, Zhang DQ (2008) Pattern representation in feature extraction and classification—matrix versus vector. IEEE Trans Neural Netw 19:758–769

    Article  Google Scholar 

  • Wang F, Wang X (2009) Neighborhood discriminant tensor mapping. Neurocomputing 72(7–9):2035–2039

    Google Scholar 

  • Wang H, Yan SC, Huang TS, Tang XO (2007) A convengent solution to tensor subspace learning. IN: Proceedings of IJCAI, pp 629–634

  • Wu KL, Yu K, Yang MS (2005) A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recogn Lett 26(4):639–652

    Article  Google Scholar 

  • Xiong HL, Swanmy MNS, Ahmad MO (2005) Two-dimensional FLD for face recognition. Pattern Recogn 38:1121–1124

    Article  Google Scholar 

  • Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H (2007) Multilinear discriminant analysis for face recognition. IEEE Trans Image Process 16(1):212–220

    Article  MathSciNet  Google Scholar 

  • Yang WK, Yan H, Wang JG, Yang JY (2008) Face recognition using complete Fuzzy LDA. In: Proceedings of ICPR, pp 1–4

  • Yang WK, Yan XY, Zhang L, Sun CY (2010) Feature extraction based on fuzzy 2DLDA. Neurocomputing 73(10–12):1556–1561

    Google Scholar 

  • Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Google Scholar 

  • Ye JP, Janardan R, Li Q (2004a) GPCA: an efficient dimension reduction scheme for image compression and retrieval. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, pp 354–363

  • Ye JP, Janardan R, Li Q (2004b) Two-dimensional linear discriminant analysis. In: Proceedings of advances in neural information processing systems

  • Ye JP (2005) Generalized low rank approximations of matrices. Mach Learn 61(1–3):167–191

    Google Scholar 

  • Ye JH, Liu ZG (2009) Multi-modal face recognition based on local binary pattern and Fisherfaces. Comput Eng 35(11):193–195

    Google Scholar 

  • Yuen PC, Lai JH (2002) Face representation using independent component analysis. Pattern Recogn 35(6):1247–1257

    Article  MATH  Google Scholar 

  • Zhang DQ, Zhou ZH (2005) (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1–3):224–231

    Article  Google Scholar 

  • Zheng W, Zou C, Zhao L (2005) Weighted maximum margin discriminant analysis with kernels. Neurocomputing 67:357–362

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Hong Kong Polytechnic University under Grants 1-ZV5V and G-U724, and by the National Natural Science Foundation of China under Grants 61375001,61170122 and 61272210, and by the Natural Science Foundation of Jiangsu Province under Grants BK2011417BK2011003, JiangSu 333 expert engineering Grant (BRA2011142), and 2011, 2012 &2013 Postgraduate Student’s Creative Research Fund of Jiangsu Province. Also, we are very thankful for the referees whose comments help us greatly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitong Wang.

Additional information

Communicated by W. Pedrycz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Chung, F. & Wang, S. MSAFC: matrix subspace analysis with fuzzy clustering ability. Soft Comput 18, 1143–1163 (2014). https://doi.org/10.1007/s00500-013-1134-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1134-3

Keywords