Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Intuitionistic fuzzy \(c\)-means clustering algorithm with neighborhood attraction in segmenting medical image

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Fuzzy segmentation methods, especially fuzzy \(c\)-means algorithms, have been widely used in medical imaging in past decades. This paper proposes a novel neighborhood intuitionistic fuzzy \(c\)-means clustering algorithm with a genetic algorithm (NIFCMGA). This new clustering algorithm technology can retain the advantages of an intuitionistic fuzzy \(c\)-means clustering algorithm to maximize benefits and reduce noise/outlier influences through neighborhood membership. Furthermore, the genetic algorithms were used simultaneously to select the optimal parameters of the proposed clustering algorithm. This proposed technology has been successfully applied to the clustering of different regions of magnetic resonance imaging and computerized tomography scanning, which may be extended to the diagnosis of abnormalities. Comparisons with other approaches demonstrate the superior performance of the proposed NIFCMGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Systems 20:87–96

    Article  MATH  MathSciNet  Google Scholar 

  • Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Systems 33:37–46

    Article  MATH  MathSciNet  Google Scholar 

  • Atanassov KT (1999) Intuitionistic fuzzy sets: theory and applications. Physica, Heidelberg

    Book  MATH  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Bezdek JC, Hall LO, Clarke LP (1993) Review of MR image segmentation techniques using pattern recognition. Med Phys 20:1033–1048

    Article  Google Scholar 

  • Bustince H, Burillo P (1996) Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Systems 79:403–405

    Article  MATH  MathSciNet  Google Scholar 

  • Chang PT, Lin KP, Lin CS, Hung KC, Hung LT, Hsu BD (2009) Developing a fuzzy bi-cluster regression to estimate heat tolerance of plants by chlorophyll fluorescence. IEEE Trans Fuzzy Systems 17:485–504

    Article  Google Scholar 

  • Chaira T (2011) A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717

    Article  Google Scholar 

  • Chen L, Chen CLP, Lu M (2011) A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Trans Systems Man Cybern Part B Cybern 41:1263–1274

    Article  Google Scholar 

  • Clark MC, Hall LO, Goldgof DB, Clarke LO, Velthuizen RP, Silbiger MS (1994) MRI segmentation using fuzzy clustering techniques. IEEE Eng Med Biol 13:730–742

    Article  Google Scholar 

  • de Jesús Rubio J, Pacheco J (2009) An stable online clustering fuzzy neural network for nonlinear system identification. Neural Comput Appl 18:633–641

    Article  Google Scholar 

  • Hruschka ER, Campello RJGB, Freitas AA (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Systems Man Cybern Part C Appl Rev 39:133–155

    Google Scholar 

  • Fan J, Han M, Wang J (2009) Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation. Pattern Recogn 42:2527–2540

    Article  MATH  Google Scholar 

  • He R, Sajja BR, Datta S, Narayana PA (2008) Volume and shape in feature space on adaptive FCM in MRI segmentation. Ann Biomed Eng 36:1580–1593

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor

  • Honda K, Ichihashi H (2004) Linear fuzzy clustering techniques with missing values and their application to local principal component analysis. IEEE Trans Fuzzy Systems 12:183–193

    Article  Google Scholar 

  • Hung CC, Kulkarni S, Kuo BC (2011) A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification. IEEE J Sel Top Signal Process 5:543–553

    Article  Google Scholar 

  • Hwang C, Rhee F (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Systems 15:107–120

    Article  Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithm for clustering data. Prentice-Hall, New Jersey

    Google Scholar 

  • Jangjit S (2009) Parameter estimation of three-phase induction motor by using genetic algorithm. J Electr Eng Technol 4:360–364

    Article  Google Scholar 

  • Ji ZX, Sun QS, Xia DS (2011) A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput Med Imaging Graph 35:383–397

    Article  Google Scholar 

  • Kannan SR, Ramathilagam S, Sathya A, Pandiyarajan R (2010) Effective fuzzy c-means based kernel function in segmenting medical images. Comput Biol Med 40:575–579

    Article  Google Scholar 

  • Karayiannis NB, Pai P (1999) Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization. IEEE Trans Med Imaging 18:172–180

    Article  Google Scholar 

  • Kohonen T (1997) Self-organizing maps, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Liu X, Wang L (2007) Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics 23:50–56

    Article  Google Scholar 

  • Maji P, Pal SK (2008) Maximum class separability for rough-fuzzy c-means based brain MR image segmentation. Lect Notes Comput Sci 5390:114–134

    Article  Google Scholar 

  • Pedrycz W, Rai P (2008) Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets Systems 159:2399–2427

    Article  MATH  MathSciNet  Google Scholar 

  • Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752

    Article  Google Scholar 

  • Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 9:459–467

    Article  Google Scholar 

  • Srivastava V, Tripathi BK, Pathak VK (2012) Evolutionary fuzzy clustering and functional modular neural network-based human recognition. Neural Comput Appl 21:1–9

    Google Scholar 

  • Tao J, Wang N (2007) DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes. Comput Chem Eng 31:1602–1618

    Article  Google Scholar 

  • Tolias YA, Panas SM (1998) A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imaging 17:263–273

    Article  Google Scholar 

  • Yang MS (1993) A survey of fuzzy clustering. Math Comput Model 18:1–16

    Article  MATH  Google Scholar 

  • Yasnoff WA, Mui JK, Bacus JW (1977) Error measures for scene segmentation. Pattern Recogn 9:217–231

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Systems Man Cybern Part C Appl Rev 30:451–462

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Science Council of the Republic of China for financially supporting this research under Contract No. NSC 102-2410-H-262-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ping Lin.

Additional information

Communicated by T.-P. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CW., Lin, KP., Wu, MC. et al. Intuitionistic fuzzy \(c\)-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19, 459–470 (2015). https://doi.org/10.1007/s00500-014-1264-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1264-2

Keywords