Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Particle swarm optimization is a heuristic and stochastic technique inspired by the flock of birds when looking for food. It is currently being used to solve continuous and discrete optimization problems. This paper proposes a hybrid, genetic inspired algorithm that uses random mutation/crossover operations and adds penalty functions to solve a particular case: the multidimensional knapsack problem. The algorithm implementation uses particle swarm for binary variables with a genetic operator. The particles update is performed in the following way: first using the iterative process (standard algorithm) described in the PSO algorithm and then using the best particle position (local) and the best global position to perform a random crossover/mutation with the original particle. The mutation and crossover operations specifically apply to personal and global best individuals. The obtained results are promising compared to those obtained by using the probability binary particle swarm optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Beasley J (1990) Or-library: distributing test problems by electronic mail. J Oper Res Soc 41(11):1069–1072

    Article  Google Scholar 

  • Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, SIS 2007, Honolulu, Hawaii, USA, 1–5 April 2007, pp 120–127

  • Chih M, Lin CJ, Chern MS, Ou TY (2014) Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Appl Math Model 38(4):1338–1350. doi:10.1016/j.apm.2013.08.009

    Article  MathSciNet  Google Scholar 

  • Chu P, Beasley J (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86. doi:10.1023/A:1009642405419

    Article  MATH  Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS ’95. pp 39–43. doi:10.1109/MHS.1995.494215

  • Haddar B, Khemakhem M, Hanafi S, Wilbaut C (2016) A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng Appl Artif Intell 55:1–13. doi:10.1016/j.engappai.2016.05.006

    Article  Google Scholar 

  • Haddar B, Khemakhem M, Rhimi H, Chabchoub H (2016b) A quantum particle swarm optimization for the 0–1 generalized knapsack sharing problem. Nat Comput 15(1):153–164. doi:10.1007/s11047-014-9470-5

    Article  MathSciNet  Google Scholar 

  • Hembecker F, Lopes H, Godoy W (2007) Particle swarm optimization for the multidimensional knapsack problem. Springer, Berlin

    Book  Google Scholar 

  • Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, IEEE computer society, Washington, DC, USA, vol 5. pp 4104–4108

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. pp 1942–1948

  • Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern C (Appl Rev) 36(4):515–519. doi:10.1109/TSMCC.2006.875410

    Article  Google Scholar 

  • Korenaga T, Hatanaka T, Uosaki K (2007) Performance improvement of particle swarm optimization for high-dimensional function optimization. In: 2007 IEEE congress on evolutionary computation. pp 3288–3293

  • Korte B, Vygen J (2007) Combinatorial optimization: theory and algorithms, 4th edn. Springer Publishing Company, Incorporated, Berlin

    MATH  Google Scholar 

  • Ktari R, Chabchoub H (2013) Essential particle swarm optimization queen with tabu search for MKP resolution. Computing 95(9):897–921. doi:10.1007/s00607-013-0316-2

    Article  MATH  Google Scholar 

  • Labed S, Gherboudj A, Chikhi S (2011) Article: a modified hybrid particle swarm optimization algorithm for multidimensional knapsack problem. Int J Comput Appl 34(2):11–16 (full text available)

    Google Scholar 

  • Li D, Sun X (eds) (2006) Surrogate duality theory. Springer, Boston

    Google Scholar 

  • Lin CJ, Chern MS, Chih M (2016) A binary particle swarm optimization based on the surrogate information with proportional acceleration coefficients for the 0–1 multidimensional knapsack problem. J Ind Prod Eng 33(2):77–102. doi:10.1080/21681015.2015.1111263

    Google Scholar 

  • Martello S, Toth P (1985) Algorithm 632: a program for the 0–1 multiple knapsack problem. ACM Trans Math Softw 11(2):135–140

    Article  MATH  Google Scholar 

  • Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, New York

    MATH  Google Scholar 

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  • Parsopoulos K, Vrahatis M (2002) Particle swarm optimization method for constrained optimization problems. In: Proceedings of the Euro-international symposium on computational intelligence 2002. IOS Press, pp 214–220

  • Parsopoulos K, Vrahatis M (2002b) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput Int J 1(2–3):235–306

    Article  MathSciNet  MATH  Google Scholar 

  • Potter M, Jong KD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The third conference on parallel problem solving from nature: parallel problem solving from nature. Springer, London, UK, PPSN III, pp 249–257

  • Shen Q, Jiang JH, Jiao CX, li Shen G, Yu RQ (2004) Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. Eur J Pharm Sci 22(2–3):145–152

    Article  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation. IEEE Computer Society, Washington, DC, USA, pp 69–73

  • Shih W (1979) A branch and bound method for the multiconstraint zero-one knapsack problem. J Oper Res Soc 30(4):369–378. doi:10.1057/jors.1979.78

  • Shizuo S, Toyoda Y (1968) An approach to linear programming with 0–1 variables. Manag Sci 15(4):B196–B207

    Article  Google Scholar 

  • Wan NF, Nolle L (2009) Solving a multi-dimensional knapsack problem using a hybrid particle swarm optimization algorithm. In: ECMS. pp 93–98

  • Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization algorithm and its application. JSW 3(9):28–35

    Article  Google Scholar 

  • Weingartner M, Ness D (1967) Methods for the solution of multidimensional 0/1 knapsack problems. Oper Res 15:83–103

    Article  Google Scholar 

  • Zhang L, Malik S (2002) The quest for efficient Boolean satisfiability solvers. In: Proceedings of the 14th international conference on computer aided verification. Springer, London, UK, CAV ’02, pp 17–36

Download references

Acknowledgements

The research was partially supported by Spanish Research Agency Projects TRA2013-48314-C3-2-R and SEGVAUTO TRIES (S2013/MIT-27139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Fernando Mingo López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingo López, L.F., Gómez Blas, N. & Arteta Albert, A. Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations. Soft Comput 22, 2567–2582 (2018). https://doi.org/10.1007/s00500-017-2511-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2511-0

Keywords