Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Stratified modeling in soft fuzzy topological structures

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce the concepts of stratified fuzzy soft topogenous, stratified fuzzy soft filter, stratified fuzzy soft quasi-proximity and stratified fuzzy soft grill. Also, we introduce the concept of fuzzy soft topogenous structures by combining fuzzy soft topogenous with fuzzy soft filter and we introduce the concept of fuzzy soft quasi-proximity by combining fuzzy soft quasi-proximity with fuzzy soft grill and give their properties. Furthermore, we establish the relationship among these fuzzy soft topological structures and their stratifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbas SE, Abd-Allah AA (2011) Stratified double \(L\)-topological structures. Math Comput Modell 54:423–439

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas SE, Ibedou I (2017) Fuzzy soft uniform spaces. Soft Comput 21:6073–6083

    Article  Google Scholar 

  • Ahmad B, Kharal A (2009) On fuzzy soft sets. Adv Fuzzy Syst 2009(2009). https://doi.org/10.1155/2009/586507

  • Aygünoglu A, C̣etkin V, Aygün H (2014) An introduction to fuzzy soft topological spaces. Hacettepe J Math Stat 43(2):193–204

    MathSciNet  Google Scholar 

  • C̣etkin V, Šostak AP, Aygűn H (2014) An approach to the concept of soft fuzzy proximity. Hindawi Publishing Corparation 2014, Article ID 782583, pp 1–9

  • Deng W, Zhao HM, Yang XH, Xiong JX, Sun M, Li B (2017) Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl Soft Comput 59:288–302

    Article  Google Scholar 

  • Deng W, Zhao HM, Zou L, Li GY, Yang XH, Wu DQ (2017) A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput 21(15):4387–4398

    Article  Google Scholar 

  • Gu B, Sheng VS (2016) A robust regularization path algorithm for \(v\)-support vector classification. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2527796

    Google Scholar 

  • Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  • Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2544779

    Google Scholar 

  • Gunduz C, Bayramov S (2013) Some results on fuzzy soft topological spaces. Math Prob Eng 2013, Article ID 835308, 10 pages

  • Kharal A, Ahmad B (2009) Mappings on fuzzy soft classes. Adv Fuzzy Syst 2009(2009). https://doi.org/10.1155/2009/407890

  • Maji PK, Biswas R, Roy AR (2001) Fuzzy soft sets. J Fuzzy Math 9:589–602

    MathSciNet  MATH  Google Scholar 

  • Maji PK, Roy AR, Biswas R (2002) An application of soft sets in a decision making problem. Comput Math Appl 44(8–9):1077–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37:19–31

    Article  MathSciNet  MATH  Google Scholar 

  • Molodtsov D (2001) Describing dependences using soft sets. J Comput Syst Sci Int 40(6):975–982

    MathSciNet  MATH  Google Scholar 

  • Šostak AP (2004) On a fuzzy topological structure. Rendiconti del Circolo Matematico di Palermo 1(11):53–64

    Google Scholar 

  • Sun Y, Gu F (2017) Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring. Int J Sens Netw 23(4):258–264

    Article  Google Scholar 

  • Tanay B, Kandemir MB (2011) Topological structure of fuzzy soft sets. Comput Math Appl 61:2952–2957

    Article  MathSciNet  MATH  Google Scholar 

  • Tripathy BC, Das PC (2012) On convergence of series of fuzzy real numbers. Kuwait J Sci Eng 39(1A):57–70

    MathSciNet  Google Scholar 

  • Tripathy BC, Debnath S (2013) \(\gamma \)-open sets and \(\gamma \)-continuous mappings in fuzzy bitopological spaces. J Intell Fuzzy Syst 24(3):631–635

    MathSciNet  MATH  Google Scholar 

  • Tripathy BC, Ray GC (2012) On mixed fuzzy topological spaces and countability. Soft Comput 16(10):1691–1695

    Article  MATH  Google Scholar 

  • Tripathy BC, Ray GC (2013) Mixed fuzzy ideal topological spaces. Appl Math Comput 220:602–607

    Article  MathSciNet  MATH  Google Scholar 

  • Tripathy BC, Ray GC (2014) On \(\delta \)-continuity in mixed fuzzy topological spaces. Boletim da Sociedade Paranaense de Matematica 32(2):175–187

    Article  MathSciNet  Google Scholar 

  • Wang B, Gu X, Ma L, Yan S (2017) Temperature error correction based on BP neural network in meteorological WSN. Int J Sens Netw 23(4):265–278

    Article  Google Scholar 

  • Wang J, Lian S, Shi YQ (2017) Hybrid multiplicative multi-watermarking in DWT domain. Multidimens Syst Signal Process 28(2):617–636

    Article  MATH  Google Scholar 

  • Xiong L, Xu Z, Shi Y-Q (2017) An integer wavelet transform based scheme for reversible data hiding in encrypted images. Multidimens Syst Signal Process. https://doi.org/10.1007/s11045-017-0497-5

    Google Scholar 

  • Xue Y, Jiang J, Zaho B, Ma T (2017) A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. https://doi.org/10.1007/s00500-017-2547-1

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Atef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. Anisetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.E., El-sanowsy, E. & Atef, A. Stratified modeling in soft fuzzy topological structures. Soft Comput 22, 1603–1613 (2018). https://doi.org/10.1007/s00500-018-3004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3004-5

Keywords