Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification in the multiple instance learning framework via spherical separation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We consider a multiple instance learning problem where the objective is the binary classifications of bags of instances, instead of single ones. We adopt spherical separation as a classification tool and come out with an optimization model which is of difference-of-convex type. We tackle the model by resorting to a specialized nonsmooth optimization algorithm, recently proposed in the literature which is based on objective function linearization and bundling. The results obtained by applying the proposed approach to some benchmark test problems are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amores J (2013) Multiple instance classification: review, taxonomy and comparative study. Artif Intell 201:81–105

    Article  MathSciNet  Google Scholar 

  • Andrews S, Tsochantaridis I, Hofmann T (2003) Support vector machines for multiple-instance learning. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 561–568

    Google Scholar 

  • Astorino A, Gaudioso M (2009) A fixed-center spherical separation algorithm with kernel transformation for classification problems. Comput Manag Sci 6:357–373

    Article  MathSciNet  Google Scholar 

  • Astorino A, Miglionico G (2016) Optimizing sensor cover energy via DC programming. Optim Lett 10:355–368

    Article  MathSciNet  Google Scholar 

  • Astorino A, Fuduli A, Gaudioso M (2010) DC models in spherical separation. J Glob Optim 48:657–669

    Article  Google Scholar 

  • Astorino A, Fuduli A, Gaudioso M (2012) Margin maximization in spherical separation. Comput Optim Appl 53:301–322

    Article  MathSciNet  Google Scholar 

  • Astorino A, Fuduli A, Gaudioso M (2019) A Lagrangian relaxation approach for binary multiple instance classification. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2018.2885852

    Article  MathSciNet  Google Scholar 

  • Bergeron C, Moore G, Zaretzki J, Breneman CM, Bennett KP (2012) Fast bundle algorithm for multiple-instance learning. IEEE Trans Pattern Anal Mach Intell 34:1068–1079

    Article  Google Scholar 

  • Carbonneau M-A, Cheplygina V, Granger E, Gagnon G (2018) Multiple instance learning: a survey of problem characteristics and applications. Pattern Recognit 77:329–353

    Article  Google Scholar 

  • de Oliveira W (2019) Proximal bundle methods for nonsmooth DC programming. J Glob Optim. https://doi.org/10.1007/s10898-019-00755-4

    Article  MathSciNet  MATH  Google Scholar 

  • de Oliveira W, Tcheou Michel P (2018) An inertial algorithm for DC programming. Set Valued Var Anal. https://doi.org/10.1007/s11228-018-0497-0

    Article  MATH  Google Scholar 

  • Gaudioso M, Giallombardo G, Miglionico G (2018a) Minimizing piecewise-concave functions over polytopes. Math Oper Res 43:580–597

    Article  MathSciNet  Google Scholar 

  • Gaudioso M, Giallombardo G, Miglionico G, Bagirov AM (2018b) Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J Glob Optim 71:37–55

    Article  MathSciNet  Google Scholar 

  • Hiriart-Urruty J-B (1986) Generalized differentiability/duality and optimization for problems dealing with differences of convex functions. Lecture notes in economic and mathematical systems, vol 256. Springer, Berlin, pp 37–70

    Google Scholar 

  • Hiriart-Urruty J-B (1989) From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality. In: Clarke FH, Demyanov VF, Giannessi F (eds) Nonsmooth optimization and related topics. Springer, New York

    MATH  Google Scholar 

  • Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms, vol I–II. Springer, New York

    MATH  Google Scholar 

  • Joki K, Bagirov AM, Karmitsa N, Mäkelä MM (2017) A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J Glob Optim 68:501–535

    Article  MathSciNet  Google Scholar 

  • Joki K, Bagirov AM, Karmitsa N, Mäkelä MM, Taheri S (2018) Double bundle method for finding clarke stationary points in nonsmooth DC programming. SIAM J Optim 28(2):1892–1919

    Article  MathSciNet  Google Scholar 

  • Kelley JE (1960) The cutting-plane method for solving convex programs. J SIAM 8:703–712

    MathSciNet  MATH  Google Scholar 

  • Khalaf W, Astorino A, D’Alessandro P, Gaudioso M (2017) A DC optimization-based clustering technique for edge detection. Optim Lett 11:627–640

    Article  MathSciNet  Google Scholar 

  • Le Thi HA, Pham Dinh T (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. J Glob Optim 133:23–46

    MathSciNet  MATH  Google Scholar 

  • Mangasarian O, Wild E (2008) Multiple instance classification via successive linear programming. J Optim Theory Appl 137:555–568

    Article  MathSciNet  Google Scholar 

  • Plastria F, Carrizosa E, Gordillo J (2014) Multi-instance classification through spherical separation and VNS. Comput Oper Res 52:326–333

    Article  MathSciNet  Google Scholar 

  • Strekalovsky AS (1997) On global optimality conditions for D.C. programming problems. Irkutsk State University, Russia

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Miglionico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudioso, M., Giallombardo, G., Miglionico, G. et al. Classification in the multiple instance learning framework via spherical separation. Soft Comput 24, 5071–5077 (2020). https://doi.org/10.1007/s00500-019-04255-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04255-1

Keywords