Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a survey about the algorithms based on swarm intelligence with parameter adaptation using some techniques to achieve the best results is presented. In this case, we analyzed the most popular algorithms such as ant colony optimization, particle swarm optimization, bee colony optimization, bat algorithm, firefly algorithm and cuckoo search. These algorithms are referenced in the paper because they have demonstrated to be superior with respect to the other optimization methods based on swarms with parameter adaptation using type-2 fuzzy logic in some applications, and also the algorithms are inspired on swarm intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amador-Angulo L, Mendoza O, Castro JR, Rodríguez-Díaz A, Melin P, Castillo O (2016) Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16:1458

    Google Scholar 

  • Amador-Angulo L, Castillo O et al (2018) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22(2):571–594

    Google Scholar 

  • Angeline PJ (1998) Using selection to improve particle swarm optimization. IEEE, Anchorage, pp 84–89

    Google Scholar 

  • Angeline PJ (2005) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, evolutionary programming. In: VII, lecture notes in computer science, vol 1447, pp 601–610

    Google Scholar 

  • Beni G (1988) The concept of cellular robotic system. IEEE Computer Society Press, Los Alamitos, pp 57–62

    Google Scholar 

  • Beni G, Hackwood S (1992) Stationary waves in cyclic swarms. IEEE Computer Society Press, Los Alamitos, pp 234–242

    Google Scholar 

  • Beni G, Wang J (1989) Swarm intelligence. RSJ Press, Tokyo, pp 425–428

    Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1997) Swarm intelligence. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Caraveo C, Valdez F, Castillo O (2017) A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot. Algorithms 10(3):85

    MathSciNet  MATH  Google Scholar 

  • Caraveo C, Valdez F, Castillo O et al (2018) A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput 22(15):4907–4920

    Google Scholar 

  • Castillo O, Amador-Angulo L (2018) A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf Sci 460–461:476–496

    Google Scholar 

  • Castillo O, Melin P (2002) Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans Neural Netw 13:1395–1408

    Google Scholar 

  • Castillo O, Neyoy H, Soria J, García M, Valdez F (2013) Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int J Adv Robot Syst 10(1):51

    Google Scholar 

  • Castillo O, Amador-Angulo L, Castro JR, Valdez MG et al (2016) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354:257–274

    Google Scholar 

  • Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C, Ochoa P et al (2019a) Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms 12(1):17

    MATH  Google Scholar 

  • Castillo O, Valdez F, Soria J, Amador-Angulo L, Ochoa P, Peraza C et al (2019b) Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(9):1–21

    MATH  Google Scholar 

  • Castro JR, Castillo O, Melin P, Díaz AR et al (2008) Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Trans Comput Sci 1:104–114

    Google Scholar 

  • Cervantes L, Castillo O, Hidalgo D, Martínez-Soto R et al (2018) Fuzzy dynamic adaptation of gap generation and mutation in genetic optimization of type 2 fuzzy controllers. Adv Oper Res 2018:1–13

    MATH  Google Scholar 

  • Cheung NJ, Ding XM, Shen HB (2014) Adaptive firefly algorithm: parameter analysis and its application. PloS 9(11):112634

    Google Scholar 

  • Chu S-C, Tsai PW, Pan J-S (2006) Cat swarm optimization. In: PRICAI

  • Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. MIT Press, Cambridge, pp 134–142

    Google Scholar 

  • Cupal et al (1996) Dynamic programming algorithm for the density of states of RNA secondary structures. Comput Sci Biol 184–186

  • Dorigo M (1992) Optimization, learning, and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Milano

  • Dorigo M (1994) Learning by probabilistic boolean networks. In: Proceedings of 1994 IEEE international conference on neural networks (ICNN'94), vol 2. Orlando, FL, USA, pp 887–891. https://doi.org/10.1109/ICNN.1994.374297

  • Dorigo M, Caro GD (1999a) Ant colony optimization: a new meta-heuristic, vol 2, p 1477

  • Dorigo M, Caro GD (1999b) The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York City, pp 11–32

    Google Scholar 

  • Dorigo M, Gambardella L (1996) A study of some properties of ant-Q, pp 656–665

    Google Scholar 

  • Dorigo M, Gambardella L (1997) Ant colonies for the travelling salesman problem. Biosystems 43(2):73–81

    Google Scholar 

  • Filho CJAB, Neto FL, Lins AJCC, Nascimento AIS, Lima MP (2008) A novel search algorithm based on fish school behavior. In: IEEE international conference on systems, man and cybernetics. SMC 2008, pp 2646–2651

  • Fogel LJ (1962) Autonomous automata. Ind Res 4:14–19

    Google Scholar 

  • Frumen O, Fevrier V, Castillo O, Gonzalez CI, Martinez G, Melin P et al (2017) Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl Soft Comput 53:74–87

    Google Scholar 

  • Gaxiola F, Melin P, Valdez F, Castro JR, Manzo-Martínez A et al (2019) PSO with dynamic adaptation of parameters for optimization in neural networks with interval type-2 fuzzy numbers weights. Axioms 8:14

    Google Scholar 

  • Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206

    MathSciNet  MATH  Google Scholar 

  • Goel N, Gupta D, Goel S et al (2013) Performance of firefly and bat algorithm for unconstrained optimization problems. Int J Adv Res Comput Sci Softw Eng 31:1405–1409

    Google Scholar 

  • Gonzalez CI, Melin P, Castro JR, Castillo O, Mendoza O (2016) Optimization of interval type-2 fuzzy systems for image edge detection. Appl Soft Comput 47:631–643

    Google Scholar 

  • Grobler J, Engelbrecht AP et al (2018) Arithmetic and parent-centric headless chicken crossover operators for dynamic particle swarm optimization algorithms. Soft Comput 22(18):5965–5976

    Google Scholar 

  • Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: IEEE swarm intelligence symposium, SIS 2008

  • Hedayatzadeh R, Salmassi FA, Keshtgari M, Akbari R, Ziarati K et al (2010) Termite colony optimization: a novel approach for optimizing continuous problems. In: 2010 18th Iranian conference on electrical engineering, pp 553–558

  • Hernández H, Blum C (2012) Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intell 6(2):117–150

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor

  • Holland J, Selfridge O, Rissland E, Arbib M et al (1984) Genetic algorithms and adaptation. In: Adaptive control of ill-defined systems. NATO conference series (II systems science), vol 16. Springer, Boston, MA

  • Juang C, Hung C (2016) Evolutionary interval type-2 fuzzy systems using continuous ant colony optimization algorithms. In: 2016 IEEE 11th conference on industrial electronics and applications (ICIEA), pp 26–31

  • Kaur A, Kaur A, Sharma S (2018) PSO based multiobjective optimization for parameter adaptation in CR based IoTs. In: 2018 4th international conference on computational intelligence communication technology (CICT), pp 1–7

  • Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70

    Google Scholar 

  • Kennedy J, Eberhart RC (1995a) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  • Kennedy J, Eberhart RC (1995b) Particle swarm optimization, pp 1942–1948

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  • Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3:87–124

    Google Scholar 

  • Lagunes ML, Castillo O, Valdez F, Soria J (2019) Multi-metaheuristic competitive model for optimization of fuzzy controllers. Algorithms 12(5):90

    MathSciNet  Google Scholar 

  • Li SG, Rong YL (2009) The reliable design of one-piece flow production system using fuzzy ant colony optimization. Comput Oper Res 36(5):1656–1663

    MATH  Google Scholar 

  • Li X, Yin M et al (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97

    Google Scholar 

  • Lučić P, Teodorović D (2001) Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the RISTAN IV triennial symposium on transportation analysis, Sao Miguel, Azores Islands. Portugal, pp 441–445

  • Lučić P, Teodorović D (2002) Transportation modeling: an artificial life approach, Washington, DC, pp 216–223

  • Lučić P, Teodorović D (2003) Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach. In: Verdegay JL (ed) Fuzzy sets in optimization. Springer, Heidelberg, pp 67–82

    MATH  Google Scholar 

  • Marković G, Teodorović D, Aćimović-Raspopović V (2007) Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun 20:273–285

    MathSciNet  MATH  Google Scholar 

  • Mehta VK, Dasgupta B (2012) A constrained optimization algorithm based on the simplex search method. Eng Optim 44(5):537–550

    MathSciNet  Google Scholar 

  • Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez JMG et al (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206

    Google Scholar 

  • Mozaffari A, Fathi A, Behzadipour S et al (2012) The great Salmon run: a novel bio-inspired algorithm for artificial system design and optimisation. Int J Bio-Inspired Comput 4(5):286–301

    Google Scholar 

  • Mukherjee A, Roy K, Jana D, Hossain SA (2019) Qualitative model optimization of almond (Terminalia catappa) oil using soxhlet extraction in type-2 fuzzy environment. Soft Comput. https://doi.org/10.1007/s00500-019-04158-1

    Article  Google Scholar 

  • Olivas F, Valdez F, Castillo O, Melin P (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070

    Google Scholar 

  • Olivas F, Amador-Angulo L, Pérez J, Caraveo C, Valdez F, Castillo O et al (2017) Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3):101

    MathSciNet  MATH  Google Scholar 

  • Olivas F, Valdez F, Melin P, Sombra A, Castillo O et al (2019) Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf Sci 476:159–175

    Google Scholar 

  • Peraza C, Valdez F, Valdez MG, Melin P, Castillo O (2016) A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9(4):69

    MathSciNet  MATH  Google Scholar 

  • Peraza C, Valdez F, Castro JR, Castillo O (2018) Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv Oper Res 2018:1–16

    Google Scholar 

  • Pérez J, Valdez F, Castillo O (2015) A new bat algorithm augmentation using fuzzy logic for dynamical parameter adaptation. In: Proceedings of advances in artificial intelligence and soft computing—14th Mexican international conference on artificial intelligence, MICAI, 2015, Cuernavaca, Morelos, Mexico, 25–31 October 2015, Part I, pp 433–442

    Google Scholar 

  • Pérez J, Valdez F, Castillo O et al (2017a) Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation

  • Pérez J, Valdez F, Castillo O, Melin P, González CI, Martinez G et al (2017b) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21(3):667–685

    Google Scholar 

  • Reynolds RG (1994) An introduction to cultural algorithms, pp 131–139

  • Rodrigues D, Pereira LAM, Nakamura R, Costa KAP, Yang X-S, de Souza AN, Papa JP (2013) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41:2250–2258

    Google Scholar 

  • Sakoe H, Chiba S et al (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26:43–49

    MATH  Google Scholar 

  • Shi Y (2011) Brain storm optimization algorithm. In: ICSI

  • Smith J, Fogarty TC (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87

    Google Scholar 

  • Spendley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4(4):441–461

    MathSciNet  MATH  Google Scholar 

  • Sur C, Sharma S, Shukla A, Meesad P, Unger H, Boonkrong S et al (2013) Egyptian vulture optimization algorithm—a new nature inspired meta-heuristics for knapsack problem. In: 9th International conference on computing and information technology (IC2IT2013). Advances in intelligent systems and computing, vol 209. Springer, Berlin

    Google Scholar 

  • Tang R, Fong S, Yang X, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 7th International conference on digital information management (ICDIM 2012), pp 165–172

  • Teodorović D (2003) Transport modeling by multi-agent systems: a swarm intelligence approach. Transp Plan Technol 26:289–312

    Google Scholar 

  • Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. In: Advanced OR and AI methods in transportation, Poznan, Poland, pp 51–60

  • Teodorović D, Šelmić M (2007) The BCO algorithm for the p median problem. (in Serbian)

  • Teodorović D, Lučić P, Marković G, Dell’Orco M (2006) Bee colony optimization: principles and applications. University of Belgrade, Belgrade, pp 151–156

    Google Scholar 

  • Thangaraj R, Pant M, Abraham A, Bouvry P et al (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217(12):5208–5226

    MATH  Google Scholar 

  • Tongchim S, Chongstitvatana P (2002) Parallel genetic algorithm with parameter adaptation. Inf Process Lett 82(1):47–54

    MathSciNet  MATH  Google Scholar 

  • Valdez F, Melin P, Castillo O (2010) Fuzzy control of parameters to dynamically adapt the PSO and GA algorithms. In: International conference on fuzzy systems, pp 1–8

  • Valdez F, Melin P, Castillo O (2012) Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: Advances in computational intelligence—11th Mexican international conference on artificial intelligence, MICAI, 2012, San Luis Potosí, Mexico, 27 October–4 November 2012. revised selected papers, part II, pp 374–385

  • Valdez F, Melin P, Castillo O et al (2014) A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl 41(14):6459–6466

    Google Scholar 

  • Wansheng ZRT (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):164–175

    Google Scholar 

  • Wu T, Yao M, Yang J (2016) Dolphin swarm algorithm. Front Inf Technol Electron Eng 17(8):717–729

    Google Scholar 

  • Yang XS (2010) A new metaheuristic bat-inspired algorithm. Cambridge 2:1

    MATH  Google Scholar 

  • Yang X-S (2013) Flower pollination algorithm for global optimization. arXiv e-prints

  • Yang XS, Deb S (2009) Cuckoo search via levy flights. In: Proceedings of world congress on nature biologically inspired computing, NaBIC, India. IEEE Publications, pp 210–214

  • Zhang LM, Dahlmann C, Zhang Y (2009) Human-inspired algorithms for continuous function optimization. In: 2009 IEEE international conference on intelligent computing and intelligent systems, vol 1, pp 318–321

Download references

Acknowledgements

The author would like to thank CONACYT and Tecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research work.

Funding

This paper did not receive funding.

Author information

Authors and Affiliations

Authors

Contributions

Fevrier Valdez worked on the conceptualization and proposal of the methodology, on the formal analysis, writing and reviewing the paper, on the investigation and validation of the results.

Corresponding author

Correspondence to Fevrier Valdez.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by O. Castillo. D. K. Jana.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez, F. A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation. Soft Comput 24, 215–226 (2020). https://doi.org/10.1007/s00500-019-04290-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04290-y

Keywords