Abstract
In this paper, a survey about the algorithms based on swarm intelligence with parameter adaptation using some techniques to achieve the best results is presented. In this case, we analyzed the most popular algorithms such as ant colony optimization, particle swarm optimization, bee colony optimization, bat algorithm, firefly algorithm and cuckoo search. These algorithms are referenced in the paper because they have demonstrated to be superior with respect to the other optimization methods based on swarms with parameter adaptation using type-2 fuzzy logic in some applications, and also the algorithms are inspired on swarm intelligence.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amador-Angulo L, Mendoza O, Castro JR, Rodríguez-Díaz A, Melin P, Castillo O (2016) Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16:1458
Amador-Angulo L, Castillo O et al (2018) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22(2):571–594
Angeline PJ (1998) Using selection to improve particle swarm optimization. IEEE, Anchorage, pp 84–89
Angeline PJ (2005) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, evolutionary programming. In: VII, lecture notes in computer science, vol 1447, pp 601–610
Beni G (1988) The concept of cellular robotic system. IEEE Computer Society Press, Los Alamitos, pp 57–62
Beni G, Hackwood S (1992) Stationary waves in cyclic swarms. IEEE Computer Society Press, Los Alamitos, pp 234–242
Beni G, Wang J (1989) Swarm intelligence. RSJ Press, Tokyo, pp 425–428
Bonabeau E, Dorigo M, Theraulaz G (1997) Swarm intelligence. Oxford University Press, Oxford
Caraveo C, Valdez F, Castillo O (2017) A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot. Algorithms 10(3):85
Caraveo C, Valdez F, Castillo O et al (2018) A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput 22(15):4907–4920
Castillo O, Amador-Angulo L (2018) A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf Sci 460–461:476–496
Castillo O, Melin P (2002) Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans Neural Netw 13:1395–1408
Castillo O, Neyoy H, Soria J, García M, Valdez F (2013) Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int J Adv Robot Syst 10(1):51
Castillo O, Amador-Angulo L, Castro JR, Valdez MG et al (2016) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354:257–274
Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C, Ochoa P et al (2019a) Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms 12(1):17
Castillo O, Valdez F, Soria J, Amador-Angulo L, Ochoa P, Peraza C et al (2019b) Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(9):1–21
Castro JR, Castillo O, Melin P, Díaz AR et al (2008) Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Trans Comput Sci 1:104–114
Cervantes L, Castillo O, Hidalgo D, Martínez-Soto R et al (2018) Fuzzy dynamic adaptation of gap generation and mutation in genetic optimization of type 2 fuzzy controllers. Adv Oper Res 2018:1–13
Cheung NJ, Ding XM, Shen HB (2014) Adaptive firefly algorithm: parameter analysis and its application. PloS 9(11):112634
Chu S-C, Tsai PW, Pan J-S (2006) Cat swarm optimization. In: PRICAI
Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. MIT Press, Cambridge, pp 134–142
Cupal et al (1996) Dynamic programming algorithm for the density of states of RNA secondary structures. Comput Sci Biol 184–186
Dorigo M (1992) Optimization, learning, and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Milano
Dorigo M (1994) Learning by probabilistic boolean networks. In: Proceedings of 1994 IEEE international conference on neural networks (ICNN'94), vol 2. Orlando, FL, USA, pp 887–891. https://doi.org/10.1109/ICNN.1994.374297
Dorigo M, Caro GD (1999a) Ant colony optimization: a new meta-heuristic, vol 2, p 1477
Dorigo M, Caro GD (1999b) The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York City, pp 11–32
Dorigo M, Gambardella L (1996) A study of some properties of ant-Q, pp 656–665
Dorigo M, Gambardella L (1997) Ant colonies for the travelling salesman problem. Biosystems 43(2):73–81
Filho CJAB, Neto FL, Lins AJCC, Nascimento AIS, Lima MP (2008) A novel search algorithm based on fish school behavior. In: IEEE international conference on systems, man and cybernetics. SMC 2008, pp 2646–2651
Fogel LJ (1962) Autonomous automata. Ind Res 4:14–19
Frumen O, Fevrier V, Castillo O, Gonzalez CI, Martinez G, Melin P et al (2017) Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl Soft Comput 53:74–87
Gaxiola F, Melin P, Valdez F, Castro JR, Manzo-Martínez A et al (2019) PSO with dynamic adaptation of parameters for optimization in neural networks with interval type-2 fuzzy numbers weights. Axioms 8:14
Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206
Goel N, Gupta D, Goel S et al (2013) Performance of firefly and bat algorithm for unconstrained optimization problems. Int J Adv Res Comput Sci Softw Eng 31:1405–1409
Gonzalez CI, Melin P, Castro JR, Castillo O, Mendoza O (2016) Optimization of interval type-2 fuzzy systems for image edge detection. Appl Soft Comput 47:631–643
Grobler J, Engelbrecht AP et al (2018) Arithmetic and parent-centric headless chicken crossover operators for dynamic particle swarm optimization algorithms. Soft Comput 22(18):5965–5976
Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: IEEE swarm intelligence symposium, SIS 2008
Hedayatzadeh R, Salmassi FA, Keshtgari M, Akbari R, Ziarati K et al (2010) Termite colony optimization: a novel approach for optimizing continuous problems. In: 2010 18th Iranian conference on electrical engineering, pp 553–558
Hernández H, Blum C (2012) Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intell 6(2):117–150
Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor
Holland J, Selfridge O, Rissland E, Arbib M et al (1984) Genetic algorithms and adaptation. In: Adaptive control of ill-defined systems. NATO conference series (II systems science), vol 16. Springer, Boston, MA
Juang C, Hung C (2016) Evolutionary interval type-2 fuzzy systems using continuous ant colony optimization algorithms. In: 2016 IEEE 11th conference on industrial electronics and applications (ICIEA), pp 26–31
Kaur A, Kaur A, Sharma S (2018) PSO based multiobjective optimization for parameter adaptation in CR based IoTs. In: 2018 4th international conference on computational intelligence communication technology (CICT), pp 1–7
Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70
Kennedy J, Eberhart RC (1995a) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948
Kennedy J, Eberhart RC (1995b) Particle swarm optimization, pp 1942–1948
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680
Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3:87–124
Lagunes ML, Castillo O, Valdez F, Soria J (2019) Multi-metaheuristic competitive model for optimization of fuzzy controllers. Algorithms 12(5):90
Li SG, Rong YL (2009) The reliable design of one-piece flow production system using fuzzy ant colony optimization. Comput Oper Res 36(5):1656–1663
Li X, Yin M et al (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97
Lučić P, Teodorović D (2001) Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the RISTAN IV triennial symposium on transportation analysis, Sao Miguel, Azores Islands. Portugal, pp 441–445
Lučić P, Teodorović D (2002) Transportation modeling: an artificial life approach, Washington, DC, pp 216–223
Lučić P, Teodorović D (2003) Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy logic approach. In: Verdegay JL (ed) Fuzzy sets in optimization. Springer, Heidelberg, pp 67–82
Marković G, Teodorović D, Aćimović-Raspopović V (2007) Routing and wavelength assignment in all-optical networks based on the bee colony optimization. AI Commun 20:273–285
Mehta VK, Dasgupta B (2012) A constrained optimization algorithm based on the simplex search method. Eng Optim 44(5):537–550
Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez JMG et al (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206
Mozaffari A, Fathi A, Behzadipour S et al (2012) The great Salmon run: a novel bio-inspired algorithm for artificial system design and optimisation. Int J Bio-Inspired Comput 4(5):286–301
Mukherjee A, Roy K, Jana D, Hossain SA (2019) Qualitative model optimization of almond (Terminalia catappa) oil using soxhlet extraction in type-2 fuzzy environment. Soft Comput. https://doi.org/10.1007/s00500-019-04158-1
Olivas F, Valdez F, Castillo O, Melin P (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070
Olivas F, Amador-Angulo L, Pérez J, Caraveo C, Valdez F, Castillo O et al (2017) Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3):101
Olivas F, Valdez F, Melin P, Sombra A, Castillo O et al (2019) Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf Sci 476:159–175
Peraza C, Valdez F, Valdez MG, Melin P, Castillo O (2016) A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9(4):69
Peraza C, Valdez F, Castro JR, Castillo O (2018) Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv Oper Res 2018:1–16
Pérez J, Valdez F, Castillo O (2015) A new bat algorithm augmentation using fuzzy logic for dynamical parameter adaptation. In: Proceedings of advances in artificial intelligence and soft computing—14th Mexican international conference on artificial intelligence, MICAI, 2015, Cuernavaca, Morelos, Mexico, 25–31 October 2015, Part I, pp 433–442
Pérez J, Valdez F, Castillo O et al (2017a) Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation
Pérez J, Valdez F, Castillo O, Melin P, González CI, Martinez G et al (2017b) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21(3):667–685
Reynolds RG (1994) An introduction to cultural algorithms, pp 131–139
Rodrigues D, Pereira LAM, Nakamura R, Costa KAP, Yang X-S, de Souza AN, Papa JP (2013) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41:2250–2258
Sakoe H, Chiba S et al (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26:43–49
Shi Y (2011) Brain storm optimization algorithm. In: ICSI
Smith J, Fogarty TC (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87
Spendley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4(4):441–461
Sur C, Sharma S, Shukla A, Meesad P, Unger H, Boonkrong S et al (2013) Egyptian vulture optimization algorithm—a new nature inspired meta-heuristics for knapsack problem. In: 9th International conference on computing and information technology (IC2IT2013). Advances in intelligent systems and computing, vol 209. Springer, Berlin
Tang R, Fong S, Yang X, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 7th International conference on digital information management (ICDIM 2012), pp 165–172
Teodorović D (2003) Transport modeling by multi-agent systems: a swarm intelligence approach. Transp Plan Technol 26:289–312
Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. In: Advanced OR and AI methods in transportation, Poznan, Poland, pp 51–60
Teodorović D, Šelmić M (2007) The BCO algorithm for the p median problem. (in Serbian)
Teodorović D, Lučić P, Marković G, Dell’Orco M (2006) Bee colony optimization: principles and applications. University of Belgrade, Belgrade, pp 151–156
Thangaraj R, Pant M, Abraham A, Bouvry P et al (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217(12):5208–5226
Tongchim S, Chongstitvatana P (2002) Parallel genetic algorithm with parameter adaptation. Inf Process Lett 82(1):47–54
Valdez F, Melin P, Castillo O (2010) Fuzzy control of parameters to dynamically adapt the PSO and GA algorithms. In: International conference on fuzzy systems, pp 1–8
Valdez F, Melin P, Castillo O (2012) Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: Advances in computational intelligence—11th Mexican international conference on artificial intelligence, MICAI, 2012, San Luis Potosí, Mexico, 27 October–4 November 2012. revised selected papers, part II, pp 374–385
Valdez F, Melin P, Castillo O et al (2014) A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl 41(14):6459–6466
Wansheng ZRT (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):164–175
Wu T, Yao M, Yang J (2016) Dolphin swarm algorithm. Front Inf Technol Electron Eng 17(8):717–729
Yang XS (2010) A new metaheuristic bat-inspired algorithm. Cambridge 2:1
Yang X-S (2013) Flower pollination algorithm for global optimization. arXiv e-prints
Yang XS, Deb S (2009) Cuckoo search via levy flights. In: Proceedings of world congress on nature biologically inspired computing, NaBIC, India. IEEE Publications, pp 210–214
Zhang LM, Dahlmann C, Zhang Y (2009) Human-inspired algorithms for continuous function optimization. In: 2009 IEEE international conference on intelligent computing and intelligent systems, vol 1, pp 318–321
Acknowledgements
The author would like to thank CONACYT and Tecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research work.
Funding
This paper did not receive funding.
Author information
Authors and Affiliations
Contributions
Fevrier Valdez worked on the conceptualization and proposal of the methodology, on the formal analysis, writing and reviewing the paper, on the investigation and validation of the results.
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there is no conflict of interest.
Additional information
Communicated by O. Castillo. D. K. Jana.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Valdez, F. A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation. Soft Comput 24, 215–226 (2020). https://doi.org/10.1007/s00500-019-04290-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-019-04290-y