Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A parametric recurrent neural network scheme for solving a class of fuzzy regression models with some real-world applications

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a hybrid scheme based on recurrent neural networks for approximate fuzzy coefficients (parameters) of fuzzy linear and polynomial regression models with fuzzy output and crisp inputs is presented. Here, a neural network is first constructed based on some concepts of convex optimization and stability theory. The suggested neural network model guarantees to find the approximate parameters of the fuzzy regression problem. The existence and convergence of the trajectories of the neural network are studied. The Lyapunov stability for the neural network is also shown. Some illustrative examples provide a further demonstration of the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput 181:1084–1089

    MathSciNet  MATH  Google Scholar 

  • Akbari MG, Hesamian G (2017) Linear model with exact inputs and interval-valued fuzzy outputs. IEEE Trans Fuzzy Syst 26:518–530

    Google Scholar 

  • Akbari MG, Hesamian G (2019) Elastic net oriented to fuzzy semiparametric regression model with fuzzy explanatory variables and fuzzy responses. IEEE Trans Fuzzy Syst 27:2433–2442

    Google Scholar 

  • Alex R (2004) Fuzzy normal regression model and related neural networks. Soft Comput 8:717–721

    MATH  Google Scholar 

  • Arefi M (2020) Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters. Soft Comput 24:311–320

    Google Scholar 

  • Arjmandzadeh Z, Safi MR, Nazemi AR (2017) A new neural network model for solving random interval linear programming problems. Neural Netw 89:11–18

    MATH  Google Scholar 

  • Avriel M (2003) Nonlinear programming: analysis and methods. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  • Azadeh A, Saberi M, Seraj O (2010) An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 35:2351–2366

    Google Scholar 

  • Azadeh A, Saberi M, Gitiforouz A (2011) An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data. J Chin Inst Engineers 34:1047–1066

    Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  • Buckley JJ, Eslami E (1997) Neural net solutions to fuzzy problems: the quadratic equation. Fuzzy Sets Syst 86:289–298

    MATH  Google Scholar 

  • Celmiņš A (1987a) Least squares model fitting to fuzzy vector data. Fuzzy Sets Syst 22:245–269

    MathSciNet  MATH  Google Scholar 

  • Celmiņš A (1987b) Multidimensional least-squares fitting of fuzzy models. Math Model 9:669–690

    MATH  Google Scholar 

  • Chachi J, Taheri SM, Arghami NR (2014) A hybrid fuzzy regression model and its application in hydrology engineering. Appl Soft Comput 25:149–158

    Google Scholar 

  • Chachi J, Taheri SM, Pazhand HR (2016) Suspended load estimation using L1-fuzzy regression, L2-fuzzy regression and MARS-fuzzy regression models. Hydrol Sci J 61:1489–1502

    Google Scholar 

  • Chan KY, Lam HK, Dillon TS, Ling SH (2014) A stepwise-based fuzzy regression procedure for developing customer preference models in new product development. IEEE Trans Fuzzy Syst 23:1728–1745

    Google Scholar 

  • Chan KY, Lam H, Yiu CKF, Dillon TS (2017) A flexible fuzzy regression method for addressing nonlinear uncertainty on aesthetic quality assessments. IEEE Trans Syst Man Cybern Syst 47:2363–2377

    Google Scholar 

  • Chaudhuri A, De K (2009) Time series forecasting using hybrid neuro-fuzzy regression model. In: International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing, pp 369–381

  • Chen L, Nien S (2020) Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations. Fuzzy Optim Decis Mak 19:191–210

    MathSciNet  MATH  Google Scholar 

  • Chen JS, Ko CH, Pan S (2010) A neural network based on the generalized Fischer-Burmeister function for nonlinear complementarity problems. Inf Sci 180:697–711

    MathSciNet  MATH  Google Scholar 

  • Cheng C, Lee ES (1999) Applying fuzzy adaptive network to fuzzy regression analysis. Comput Math Appl 38:123–140

    MathSciNet  MATH  Google Scholar 

  • Cheng C, Lee ES (2001) Fuzzy regression with radial basis function network. Fuzzy Sets Syst 119:291–301

    MathSciNet  Google Scholar 

  • Cheng C, Low B, Chan P, Motwani J (2001) Improving the performance of neural networks in classification using fuzzy linear regression. Expert Syst Appl 20:201–206

    Google Scholar 

  • Choi S Hoe, Jung H, Kim H (2019) Ridge fuzzy regression model. Int J Fuzzy Syst 21:2077–2090

    MathSciNet  Google Scholar 

  • Chukhrova N, Johannssen A (2019) Fuzzy regression analysis: systematic review and bibliography. Appl Soft Comput 84:105708. https://doi.org/10.1016/j.asoc.2019.105708

    Article  Google Scholar 

  • Ciavolino E, Calcagnì A (2016) A Generalized Maximum Entropy (GME) estimation approach to fuzzy regression model. Appl Soft Comput 38:51–63

    Google Scholar 

  • Coppi R, D’Urso P, Giordani P, Santoro A (2006) Least squares estimation of a linear regression model with LR fuzzy response. Comput Stat Data Anal 51:267–286

    MathSciNet  MATH  Google Scholar 

  • Danesh S, Farnoosh R, Razzaghnia T (2016) Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system. Neurocomputing 173:1450–1460

    MATH  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, p 1

    MATH  Google Scholar 

  • De Hierro AFRL, Martínez-Moreno J, López R, Aguilar-Peña C (2016) Estimation of a fuzzy regression model using fuzzy distances. IEEE Trans Fuzzy Syst 24:344–359

    Google Scholar 

  • Diamond P (1987) Least squares fitting of several fuzzy variables. Preprints of Second IFSA World Congress, Tokyo, pp 329–331

  • Diamond P (1988) Fuzzy least squares. Inf Sci 46:141–157

    MathSciNet  MATH  Google Scholar 

  • Diamond P, Kloeden P (1990) Metric spaces of fuzzy sets. Fuzzy Sets Syst 35:241–249

    MathSciNet  MATH  Google Scholar 

  • Diamond P, Kloeden PE (1994) Metric spaces of fuzzy sets: theory and applications. World scientific, Singapore

    MATH  Google Scholar 

  • Diamond P, Tanaka H (1998) Fuzzy regression analysis, fuzzy sets in decision analysis, operations research and statistics. Kluwer Academic Publishers, Norwell, pp 349–387

    MATH  Google Scholar 

  • Dubois DJ (1980) Fuzzy sets and systems: theory and applications. Mathematics in science and engineering. Academic press, Cambridge

    MATH  Google Scholar 

  • Dunyak JP, Wunsch D (2000) Fuzzy regression by fuzzy number neural networks. Fuzzy Sets Syst 112:371–380

    MathSciNet  MATH  Google Scholar 

  • D’Urso P, Massari R (2013) Weighted least squares and least median squares estimation for the fuzzy linear regression analysis. Metron 71:279–306

    MathSciNet  MATH  Google Scholar 

  • D’Urso P, Massari R, Santoro A (2011) Robust fuzzy regression analysis. Inf Sci 181:4154–4174

    MathSciNet  MATH  Google Scholar 

  • Ebadi MJ, Suleiman M, Ismail FB, Ahmadian A, Shahryari MR, Salahshour S (2013) A new distance measure for trapezoidal fuzzy numbers. Math Problem Eng 2013

  • Fazlollahtabar H, Gholizadeh H (2020) Fuzzy possibility regression integrated with fuzzy adaptive neural network for predicting and optimizing electrical discharge machining parameters. Comput Ind Eng 140:106–225

    Google Scholar 

  • Ferraro MB (2017) On the generalization performance of a regression model with imprecise elements. Int J Uncertain Fuzziness Knowl Based Syst 25:723–740

    MathSciNet  MATH  Google Scholar 

  • Fukushima M (1992) Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math Program 53:99–110

    MathSciNet  MATH  Google Scholar 

  • Fullér R (1995) Neural fuzzy systems. Citeseer, Princeton

    Google Scholar 

  • Gong Y, Yang S, Ma H, Ge M (2018) Fuzzy regression model based on incentre distance and application to employee performance evaluation. Int J Fuzzy Syst 20:2632–2639

    Google Scholar 

  • Hale JK (1969) Ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  • Hassanpour H, Maleki HR, Yaghoobi MA (2010) Fuzzy linear regression model with crisp coefficients: a goal programming approach. Iran J Fuzzy Syst 7:1–153

    MathSciNet  MATH  Google Scholar 

  • He Y, Wang X, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364:222–240

    MATH  Google Scholar 

  • He Y, Wei C, Long H, Ashfaq RAR, Huang JZ (2018) Random weight network-based fuzzy nonlinear regression for trapezoidal fuzzy number data. Appl Soft Comput 70:959–979

    Google Scholar 

  • Hee YJ, Seung CH (2013) Fuzzy least squares estimation with new fuzzy operations. In: Kruse R, Berthold M, Moewes C, Gil M, Grzegorzewski P, Hryniewicz O (eds) Synergies of soft computing and statistics for intelligent data analysis. Springer, Berlin, pp 193–202

    Google Scholar 

  • Hesamian G, Akbari MG (2017) Semi-parametric partially logistic regression model with exact inputs and intuitionistic fuzzy outputs. Appl Soft Comput 58:517–526

    Google Scholar 

  • Hesamian G, Akbari MG, Asadollahi M (2017) Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs. Expert Syst Appl 71:230–239

    Google Scholar 

  • Hosseinzadeh E, Hassanpour H, Arefi M (2015) A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs. Soft comput 19:1143–1151

    MATH  Google Scholar 

  • Huang L, Zhang B, Huang Q (1989) Robust interval regression analysis using neural networks. Fuzzy Sets Syst 97:337–347

    Google Scholar 

  • Ishibuchi H, Nii M (2001) Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets Syst 119:273–290

    MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1992) Fuzzy regression analysis using neural networks. Fuzzy Sets Systems 50:257–265

    MathSciNet  Google Scholar 

  • Ishibuchi H, Tanaka H, Okada H (1993) An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets Syst 57:27–39

    MathSciNet  MATH  Google Scholar 

  • Jeng J, Chuang C, Su S (2003) Support vector interval regression networks for interval regression analysis. Fuzzy Sets Syst 138:283–300

    MathSciNet  MATH  Google Scholar 

  • Jung HY, Yoon JH, Choi SH (2015) Fuzzy linear regression using rank transform method. Fuzzy Sets Syst 274:97–108

    MathSciNet  MATH  Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    MathSciNet  MATH  Google Scholar 

  • Kao C, Chyu CL (2003) Least-squares estimates in fuzzy regression analysis. Eur J Oper Res 148:426–435

    MathSciNet  MATH  Google Scholar 

  • Khashei M, Hejazi SR, Bijari M (2008) A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets Syst 159:769–786

    MathSciNet  MATH  Google Scholar 

  • Li J, Zeng W, Xie J, Yin Q (2016) A new fuzzy regression model based on least absolute deviation. Eng Appl Artif Intell 52:54–64

    Google Scholar 

  • Liu H, Wang J, He Y, Ashfaq RAR (2017) Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression. Neural Comput Appl 28:3465–3476

    Google Scholar 

  • Lu J, Wang R (2009) An enhanced fuzzy linear regression model with more flexible spreads. Fuzzy Sets Syst 160:2505–2523

    MathSciNet  MATH  Google Scholar 

  • Mendel JM (2014) On a novel way of processing data that uses fuzzy sets for later use in rule-based regression and pattern classification. Int J Fuzzy Logic Intell Syst 14:1–7

    Google Scholar 

  • Miller RK, Miche AN (1982) Ordinary differential equations. Academic Press, New York

    Google Scholar 

  • Mosleh M, Otadi M, Abbasbandy S (2010) Evaluation of fuzzy regression models by fuzzy neural network. J Comput Appl Math 234:825–834

    MathSciNet  MATH  Google Scholar 

  • Mosleh M, Otadi M, Abbasbandy S (2011) Fuzzy polynomial regression with fuzzy neural networks. Appl Math Model 35:5400–5412

    MathSciNet  MATH  Google Scholar 

  • Mosleh M, Allahviranloo T, Otadi M (2012) Evaluation of fully fuzzy regression models by fuzzy neural network. Neural Comput Appl 21:105–112

    Google Scholar 

  • Nasrabadi E, Hashemi SM (2008) Robust fuzzy regression analysis using neural networks. Int J Uncertain Fuzziness Knowl Based Syst 16:579–598

    MATH  Google Scholar 

  • Nazemi AR (2018) A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Process Lett 47:167–192

    Google Scholar 

  • Nazemi AR (2019) A new collaborate neuro-dynamic framework for solving convex second order cone programming problems with an application in multi-fingered robotic hands. Appl Intell 49:3512–3523

    Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1969) Applied linear statistical models. Irwin, Chicago, p 4

    Google Scholar 

  • Nikseresht A, Nazemi AR (2019) A novel neural network for solving semidefinite programming problems with some applications. J Comput Appl Math 350:309–323

    MathSciNet  MATH  Google Scholar 

  • Otadi M (2014) Fully fuzzy polynomial regression with fuzzy neural networks. Neurocomputing 142:486–493

    Google Scholar 

  • Pappis CP, Karacapilidis NI (1993) A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst 56:171–174

    MathSciNet  MATH  Google Scholar 

  • Pehlivan NY, Apaydın A (2016) Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output. Complex Intell Syst 2:61–73

    Google Scholar 

  • Poleshchuk O, Komarov E (2010) Hybrid fuzzy least-squares regression model for qualitative characteristics. In: Huynh VN, Nakamori Y, Lawry J, Inuiguchi M (eds) Integrated uncertainty management and applications. Springer, Berlin, pp 187–196

    Google Scholar 

  • Quarteroni A, Sacco R, Saleri F (2010) Numerical mathematics, vol 37. Springer, Berlin

    MATH  Google Scholar 

  • Rabiei MR, Arghami NR, Taheri SM, Gildeh BS (2014) Least-squares approach to regression modeling in full interval-valued fuzzy environment. Soft Comput 18:2043–2059

    MATH  Google Scholar 

  • Rabiei MR, Taheri SM, Arghami N (2015) A linear-programming approach to interval-valued fuzzy regression analysis. Int J Intell Technol Appl Stat (IJITAS) 8:171–203

    Google Scholar 

  • Rabiei MR, Arashi M, Farrokhi M (2019) Fuzzy ridge regression with fuzzy input and output. Soft Comput 23:12189–12198

    Google Scholar 

  • Ramli AA, Watada J, Pedrycz W (2015) Information granules problem: an efficient solution of real-time fuzzy regression analysis. In: Pedrycz W, Chen SM (eds) Information granularity, big data, and computational intelligence. Sprinegr, Cham, pp 39–61

    Google Scholar 

  • Rodriguez-Fdez I, Mucientes M, Bugarín A (2016) FRULER: Fuzzy rule learning through evolution for regression. Inf Sci 354:1–18

    Google Scholar 

  • Roh S, Ahn T, Pedrycz W (2012) Fuzzy linear regression based on polynomial neural networks. Expert Syst Appl 39:8909–8928

    Google Scholar 

  • Sakawa M, Yano H (1992) Multiobjective fuzzy linear regression analysis for fuzzy input–output data. Fuzzy Sets Syst 47:173–181

    MATH  Google Scholar 

  • Shen S, Mei C, Cui J (2010) A fuzzy varying coefficient model and its estimation. Comput Math Appl 60:1696–1705

    MathSciNet  MATH  Google Scholar 

  • Somaye Y, Mahmood O, Niloofar I (2017) A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management. Beni-Suef Univ J Basic Appl Sci 6:2314–8535

    Google Scholar 

  • Taheri SM, Kelkinnama M (2012) Fuzzy linear regression based on least absolutes deviations. Iran J Fuzzy Syst 9:121–140

    MathSciNet  MATH  Google Scholar 

  • Taheri SM, Salmani F, Abadi A, Majd HA (2016) A transition model for fuzzy correlated longitudinal responses. J Intell Fuzzy Syst 30:1265–1273

    MATH  Google Scholar 

  • Tanaka H, Uegima S, Asai K (1982) Linear regression analysis with fuzzy mode. IEEE Trans Syst Man Cybern 12:903–907

    Google Scholar 

  • Tanaka H, Hayashi I, Watada J (1989) Possibilistic linear regression analysis for fuzzy data. Eur J Oper Res 40:389–396

    MathSciNet  MATH  Google Scholar 

  • Wang T, Shi P, Wang G (2020) Solving fuzzy regression equation and its approximation for random fuzzy variable and their application. Soft Comput 24:919–933

    Google Scholar 

  • Xu R (1991) A linear regression model in fuzzy environment. Adv Model Simul 27:31–40

    MATH  Google Scholar 

  • Zadeh LA (1965) Information and control. Fuzzy Sets 8:338–353

    Google Scholar 

  • Zhang D, Deng L, Cai K, So A (2005) Fuzzy nonlinear regression with fuzzified radial basis function network. IEEE Trans Fuzzy Syst 13:742–760

    Google Scholar 

  • Zhang Z, Lai Z, Xu Y, Shao L, Wu J, Xie GS (2017a) Discriminative elastic-net regularized linear regression. IEEE Trans Image Process 19:1466–1481

    MathSciNet  MATH  Google Scholar 

  • Zhang T, Deng Z, Choi K, Liu J, Wang S (2017b) Robust extreme learning fuzzy systems using ridge regression for small and noisy datasets. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp. 1–7

  • Zhou J, Zhang H, Gu YP, Athanasios A (2018) Affordable levels of house prices using fuzzy linear regression analysis: the case of Shanghai. Soft Comput 22:5407–5418

    Google Scholar 

  • Zimmermann HJ (2011) Fuzzy set theory and its applications. Springer, Berlin

    Google Scholar 

  • Zolfaghari ZS, Mohebbi M, Najariyan M (2014) Application of fuzzy linear regression method for sensory evaluation of fried donut. Appl Soft Comput 22:417–423

    Google Scholar 

  • Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J (2016) Fuzzy regression transfer learning in Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 25:1795–1807

    Google Scholar 

  • Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J (2017) Granular fuzzy regression domain adaptation in Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 26:847–858

    Google Scholar 

Download references

Acknowledgements

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nazemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbasi, D., Nazemi, A. & Rabiei, M. A parametric recurrent neural network scheme for solving a class of fuzzy regression models with some real-world applications. Soft Comput 24, 11159–11187 (2020). https://doi.org/10.1007/s00500-020-05008-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05008-1

Keywords