Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A biometric cryptosystem scheme based on random projection and neural network

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2021

This article has been updated

Abstract

Several biometric cryptosystem techniques have been proposed to protect biometric templates and preserve users’ privacy. Although such techniques can thwart different attacks, it is difficult to achieve well non-linkability between biometric cryptosystems. In this paper, we propose a novel biometric cryptosystem scheme based on random projection (RP) and back propagation neural network (BPNN) to perform the task of biometric template protection. With the help of RP, an original biometric feature vector can be projected onto a fix-length feature vector of random subspace that is derived from a user-specific projection matrix. This process is revocable and produces unlinkable biometric templates. The proposed scheme further utilizes a BPNN model to bind a projected feature vector with a random key. Based on BPNN, a robust mapping between a projected feature vector and a random key is learned to generate an error-correction-based biometric cryptosystem. The security of the proposed scheme is analyzed and the experimental results on multiple biometric datasets show the feasibility and efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

  • Alsmirat MA, Al-Alem F, Al-Ayyoub M, Jararweh Y, Gupta B (2019) Impact of digital fingerprint image quality on the fingerprint recognition accuracy. Multimed Tools Appl 78(3):3649–3688

    Article  Google Scholar 

  • Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’01. New York, NY, USA, pp 245–250. ACM

  • Bose R, Ray-Chaudhuri D (1960) On a class of error correcting binary group codes. Inf Control 3(1):68–79

    Article  MathSciNet  Google Scholar 

  • Collection of facial images: Faces94 (2021). https://cmp.felk.cvut.cz/~spacelib/faces/faces94.html. Accessed 23 Mar 2021

  • Dodis Y, Ostrovsky R, Reyzin L, Smith A (2008) Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J Comput 38(1):97–139

    Article  MathSciNet  Google Scholar 

  • Esposito C, Ficco M, Gupta BB (2021) Blockchain-based authentication and authorization for smart city applications. Inf Process Manage 58(2):102468

  • Feng YC, Yuen PC, Jain AK (2010) A hybrid approach for generating secure and discriminating face template. IEEE Trans Inf Forensics Secur 5(1):103–117

    Article  Google Scholar 

  • Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  • Gad R, Talha M, Abd El-Latif AA, Zorkany M, Ayman ES, Nawal EF, Muhammad G (2018) Iris recognition using multi-algorithmic approaches for cognitive internet of things (ciot) framework. Future Gener Comput Syst 89:178–191

    Article  Google Scholar 

  • General Data Protection Regulation (2016). https://ec.europa.eu/info/law/law-topic/data-protection_en. Accessed 23 Mar 2021

  • Gomez-Barrero M, Rathgeb C, Galbally J, Busch C, Fierrez J (2016) Unlinkable and irreversible biometric template protection based on bloom filters. Inf Sci 370(C):18–32

    Article  MathSciNet  Google Scholar 

  • Hermans J, Peeters R, Mennink B (2014) Shattering the glass maze. In: 2014 International conference of the biometrics special interest group (BIOSIG), pp 1–6

  • ISO/IEC19795-1: biometric performance testing and reporting: principles and framework. International Organization for Standardization (2011)

  • ISO/IEC24745:2011: information technology-security techniques-biometric information protection. International Organization for Standardization (2011)

  • Jain AK, Maltoni D (2003) Handbook of fingerprint recognition. Springer, New York

    MATH  Google Scholar 

  • Jain AK, Prabhakar S, Hong L, Pankanti S (2000) Filterbank-based fingerprint matching. Trans. Img. Proc. 9(5):846–859

    Article  Google Scholar 

  • Jain A, Nandakumar K, Nagar A (2008) Biometric template security. EURASIP J Adv Signal Process 1:579416

    Article  Google Scholar 

  • Jin ATB (2006) Cancellable biometrics and multispace random projections. In: 2006 Conference on computer vision and pattern recognition workshop (CVPRW’06), p 164

  • Jin ATB, Ling DNC, Goh A (2004) Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recognit 37(11):2245–2255

    Article  Google Scholar 

  • Juels A, Sudan M (2006) A fuzzy vault scheme. Des Codes Cryptogr 38(2):237–257

    Article  MathSciNet  Google Scholar 

  • Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In: Proceedings of the 6th ACM conference on computer and communications security, CCS ’99. ACM, New York, NY, USA, pp 28–36

  • Kaski S (1998) Dimensionality reduction by random mapping: fast similarity computation for clustering. In: 1998 IEEE international joint conference on neural networks proceedings. IEEE world congress on computational intelligence, vol 1, pp 413–418

  • Kaushik S, Gandhi C (2019) Ensure hierarchal identity based data security in cloud environment. Int J Cloud Appl Comput (IJCAC) 9(4):21–36

    Google Scholar 

  • Kelkboom EJC, Breebaart J, Kevenaar TAM, Buhan I, Veldhuis RNJ (2011) Preventing the decodability attack based cross-matching in a fuzzy commitment scheme. IEEE Trans Inf Forensics Secur 6(1):107–121

    Article  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  Google Scholar 

  • Lee Y, Chung Y, Moon K (2009) Inverse operation and preimage attack on biohashing. In: 2009 IEEE workshop on computational intelligence in biometrics: theory, algorithms, and applications, pp 92–97

  • Li JQ, Barron AR (1999) Mixture density estimation. In: Advances in neural information processing systems 12. MIT Press, pp 279–285

  • Li SZ, Jain A (2015) Encyclopedia of biometrics. Springer, Berlin

    Book  Google Scholar 

  • Li J, Cheng Jh, Shi Jy, Huang F (2012) Brief introduction of back propagation (BP) neural network algorithm and its improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 553–558

  • Li D, Deng L, Gupta BB, Wang H, Choi C (2019) A novel cnn based security guaranteed image watermarking generation scenario for smart city applications. Inf Sci 479:432–447

    Article  Google Scholar 

  • Martiri E, Gomez-Barrero M, Yang B, Busch C (2017) Biometric template protection based on bloom filters and honey templates. IET Biomet 6(1):19–26

    Article  Google Scholar 

  • Nandakumar K, Jain AK (2015) Biometric template protection: bridging the performance gap between theory and practice. IEEE Signal Process Mag 32(5):88–100

    Article  Google Scholar 

  • Olakanmi OO, Dada A (2019) An efficient privacy-preserving approach for secure verifiable outsourced computing on untrusted platforms. Int J Cloud Appl Comput (IJCAC) 9(2):79–98

    Google Scholar 

  • Ouda O, Tsumura N, Nakaguchi T (2010) Tokenless cancelable biometrics scheme for protecting iris codes. In: 2010 20th international conference on pattern recognition, pp 882–885

  • Patel VM, Ratha NK, Chellappa R (2015) Cancelable biometrics: a review. IEEE Signal Process Mag 32(5):54–65

    Article  Google Scholar 

  • Peng J, Yang B (2017) A novel binarization scheme for real-valued biometric feature. In: 2017 IEEE 41st annual computer software and applications conference (COMPSAC), vol 2. IEEE, pp 724–729

  • Peng J, Li Q, El-Latif AAA, Wang N, Niu X (2013) Finger vein recognition with Gabor wavelets and local binary patterns. IEICE Trans. Inf. Syst E96—-D(8):1886–1889

    Article  Google Scholar 

  • Peng J, Li Q, Abd El-Latif AA, Niu X (2014) Finger multibiometric cryptosystems: fusion strategy and template security. J Electron Imaging 23(2):023001

    Article  Google Scholar 

  • Rane S, Wang Y, Draper SC, Ishwar P (2013) Secure biometrics: concepts, authentication architectures, and challenges. IEEE Signal Process Mag 30(5):51–64

    Article  Google Scholar 

  • Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Syst J 40(3):614–634

    Article  Google Scholar 

  • Ratha NK, Chikkerur S, Connell JH, Bolle RM (2007) Generating cancelable fingerprint templates. IEEE Trans Pattern Anal Mach Intell 29(4):561–572

    Article  Google Scholar 

  • Rathgeb C, Uhl A (2011) A survey on biometric cryptosystems and cancelable biometrics. EURASIP J Inf Secur 1:3

    Article  Google Scholar 

  • Sarkar A, Singh BK (2020) A review on performance, security and various biometric template protection schemes for biometric authentication systems. Multimed Tools Appl 79(37):27721–27776

    Article  Google Scholar 

  • Securid (2021). https://en.wikipedia.org/wiki/RSA_SecurID. Accessed 23 Mar 2021

  • Talreja V, Valenti MC, Nasrabadi NM (2020) Deep hashing for secure multimodal biometrics. IEEE Trans Inf Forensics Secur 16:1306–1321

    Article  Google Scholar 

  • Tarek M, Ouda O, Hamza T (2016) Robust cancellable biometrics scheme based on neural networks. IET Biomet 5(3):220–228

    Article  Google Scholar 

  • Teoh ABJ, Yuang CT (2007) Cancelable biometrics realization with multispace random projections. IEEE Trans Syst Man Cybern Part B (Cybernetics) 37(5):1096–1106

    Article  Google Scholar 

  • The Hong Kong polytechnic university finger image database version 1.0 (2010). http://www4.comp.polyu.edu.hk/~csajaykr/fvdatabase.htm. Accessed 23 Mar 2021

  • Viulib (2021). https://www.viulib.org/index.html. Accessed date: 23 Mar 2021

  • Wang Y, Plataniotis KN (2010) An analysis of random projection for changeable and privacy-preserving biometric verification. IEEE Trans Syst Man Cybern Part B (Cybern) 40(5):1280–1293

    Article  Google Scholar 

  • Wang N, Li Q, Abd El-Latif AA, Peng J, Niu X (2014a) An enhanced thermal face recognition method based on multiscale complex fusion for Gabor coefficients. Multimed Tools Appl 72(3):2339–2358

  • Wang N, Li Q, Abd El-Latif AA, Zhang T, Niu X (2014b) Toward accurate localization and high recognition performance for noisy iris images. Multimed Tools Appl 71(3):1411–1430

  • Wang H, Li Z, Li Y, Gupta B, Choi C (2020) Visual saliency guided complex image retrieval. Pattern Recognit Lett 130:64–72

    Article  Google Scholar 

  • Yang B, Hartung D, Simoens K, Busch C (2010) Dynamic random projection for biometric template protection. In: 2010 Fourth IEEE international conference on biometrics: theory, applications and systems (BTAS), pp. 1–7

  • Yu C, Li J, Li X, Ren X, Gupta BB (2018) Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585–4608

    Article  Google Scholar 

  • Zuo J, Ratha NK, Connell JH (2008) Cancelable iris biometric. In: 2008 19th International conference on pattern recognition, pp 1–4

Download references

Acknowledgements

This work is supported by the 2019-“Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education of China (Grant No. HLJ2019015), Heilongjiang Provincial Natural Science Foundation of China (Grant No. LH2020F044), the Fundamental Research Funds for Heilongjiang Universities, China (Grant No. 2020-KYYWF-1014), and the Guangxi Key Laboratory of Cryptography and Information Security (GCIS201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jialiang Peng or B. B. Gupta.

Ethics declarations

Conflict of interest

We declare that no conflict of interest exits in the submission of this manuscript. All the procedures performed in this study were in accordance with the ethical standards. We further declare that informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Yang, B., Gupta, B.B. et al. A biometric cryptosystem scheme based on random projection and neural network. Soft Comput 25, 7657–7670 (2021). https://doi.org/10.1007/s00500-021-05732-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05732-2

Keywords