Abstract
A Hybrid Quantum Genetic Algorithm with an Adaptive Rotation Angle (HQGAAA) for the 0-1 knapsack problem is presented. This novel proposal uses the Deutsch-Jozsa quantum circuit to generate quantum populations, which synergistically works as haploid recombination and mutation operators taking advantage of quantum entanglement providing exploitative and explorative features to produce new individuals. Furthermore, the created individuals are updated using an adaptive rotation angle operator that helps refine new individuals to converge to the optimal solution. We performed comparative tests with other quantum evolutionary algorithms and the classical genetic algorithm to demonstrate that this proposal performed better with the tested problem. Results showed that quantum algorithms performed similar but better than the classic genetic algorithm regarding accuracy. Moreover, statistic tests demonstrated that our proposal is faster than the other quantum algorithms tested.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
We can provided the application software and detailed instructions to obtain the reported data.
Code Availability
Software application can be shared under requirement.
References
Adeyemo H, Ahmed M (2017) Solving 0/1 knapsack problem using metaheuristic techniques. In: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), pp. 1–6. https://doi.org/10.1109/IEEEGCC.2017.8448239
Arute F, Arya K, Babbush R et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574:505–510
Ballance CJ, Harty TP, Linke NM, Sepiol MA, Lucas DM (2016) High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Physical Review Letters 117(6). https://doi.org/10.1103/physrevlett.117.060504
Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500–503. https://doi.org/10.1038/nature13171
Bhattacharjee KK, Sarmah SP (2017) Modified swarm intelligence based techniques for the knapsack problem. Appl Intell 46(1):158–179. https://doi.org/10.1007/s10489-016-0822-y
Calabrò G, Torrisi V, Inturri G, Ignaccolo M (2020) Improving inbound logistic planning for large-scale real-world routing problems: a novel ant-colony simulation-based optimization. Eur Transp Res Rev 12(1):21. https://doi.org/10.1186/s12544-020-00409-7
Cao Z, Uhlmann J, Liu L (2018) Analysis of deutsch-jozsa quantum algorithm. IACR Cryptol ePrint Arch 2018:249
Delahaye D, Chaimatanan S, Mongeau M (2019) In: Gendreau, M., Potvin, J.-Y. (eds.) Simulated Annealing: From Basics to Applications, pp. 1–35. Springer, Cham. https://doi.org/10.1007/978-3-319-91086-4_1
Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002
Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. R Soc 400:97–117
Feynman RP (1959) There’s plenty of room at the bottom. IEEE 1:60–66
Forno E, Acquaviva A, Kobayashi Y, Macii E, Urgese G (2018) A parallel hardware architecture for quantum annealing algorithm acceleration. In: 2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pp. 31–36. https://doi.org/10.1109/VLSI-SoC.2018.8644777
Gao Y, Zhang F, Zhao Y, Li C (2018) Quantum-inspired wolf pack algorithm to solve the 0–1 knapsack problem. Math Probl Eng 2018:1–10. https://doi.org/10.1155/2018/5327056
García J, Crawford B, Soto R, Castro C, Paredes F (2018) A k-means binarization framework applied to multidimensional knapsack problem. Appl Intell 48(2):357–380. https://doi.org/10.1007/s10489-017-0972-6
Han K-H, Jong-Hwan Kim (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593. https://doi.org/10.1109/TEVC.2002.804320
Hao L (2019) An angle-expressed quantum evolutionary algorithm for quadratic knapsack problem. IOP Conf Ser: Mater Sci Eng 631:052054. https://doi.org/10.1088/1757-899x/631/5/052054
Hirzel T (Agosto 2020) Building the Quantum Stack for the NISQ Era. https://www.hpcwire.com/2020/08/24/building-the-quantum-stack-for-the-nisq-era/
Huang Y, Wang P, Li J, Chen X, Li T (2019) A binary multi-scale quantum harmonic oscillator algorithm for 0–1 knapsack problem with genetic operator. IEEE Access 7:137251–137265. https://doi.org/10.1109/ACCESS.2019.2942340
IBM (2020) The Qiskit Elements. https://quantum-computing.ibm.com/docs/qiskit/the_elements
Jindal A, Bansal S (2019) Effective methods for constraint handling in quantum inspired evolutionary algorithm for multi-dimensional 0-1 knapsack problem. In: 2019 4th International Conference on Information Systems and Computer Networks (ISCON), pp. 534–537. https://doi.org/10.1109/ISCON47742.2019.9036166
Johansson N, Larsson J-A (2017) Efficient classical simulation of the deutsch–jozsa and simon’s algorithms. Quantum Information Processing 16(9). https://doi.org/10.1007/s11128-017-1679-7
Jourdan L, Basseur M, Talbi E-G (2009) Hybridizing exact methods and metaheuristics: A taxonomy. Eur J Oper Res 199:620–629. https://doi.org/10.1016/j.ejor.2007.07.035
King J, Yarkoni S, Raymond J, Ozfidan I, King AD, Nevisi MM, Hilton JP, McGeoch CC (2017) Quantum Annealing amid Local Ruggedness and Global Frustration
Kuk-Hyun Han, Jong-Hwan Kim (2000) Genetic quantum algorithm and its application to combinatorial optimization problem. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 2, pp. 1354–13602
Kuk-Hyun Han, Kui-Hong Park, Ci-Ho Lee, Jong-Hwan Kim (2001) Parallel quantum-inspired genetic algorithm for combinatorial optimization problem. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 2, pp. 1422–14292
Lai X, Hao J-K, Yue D (2019) Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem. Eur J Op Res 274(1):35–48. https://doi.org/10.1016/j.ejor.2018.10.001
Lai X, Hao J-K, Fu Z-H, Yue D (2020) Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem. Expert Syst Appl 149:113310. https://doi.org/10.1016/j.eswa.2020.113310
Lai X, Hao J, Yue D, Gao H (2018) A diversification-based quantum particle swarm optimization algorithm for the multidimensional knapsack problem. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 315–319. https://doi.org/10.1109/CCIS.2018.8691247
López-Sandoval D, Cobos C (2020) Adiabatic quantum computing applied to the solution of the binary knapsack problem. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 38:214–227
Lourenço HR, Martin OC, Stützle T (2019) In: Gendreau, M., Potvin, J.-Y. (eds.) Iterated Local Search: Framework and Applications, pp. 129–168. Springer, Cham. https://doi.org/10.1007/978-3-319-91086-4_5
Montiel Ross OH (2020) A review of quantum-inspired metaheuristics: Going from classical computers to real quantum computers. IEEE Access 8:814–838. https://doi.org/10.1109/ACCESS.2019.2962155
Narayanan A (1999) Quantum computing for beginners. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) 3, 2231–22383
Narayanan A, Moore M (1996) Quantum-inspired genetic algorithms, pp. 61–66. https://doi.org/10.1109/ICEC.1996.542334
Ozsoydan FB, Baykasoglu A (2019) A swarm intelligence-based algorithm for the set-union knapsack problem. Future Gener Comput Syst 93:560–569. https://doi.org/10.1016/j.future.2018.08.002
Paredes López M, Meneses Viveros A, Morales-Luna G (2018) Algoritmo cuántico de Deutsch y Jozsa en GAMA. Revista mexicana de física 64:181–189
Pednault E, Gunnels JA, Nannicini G, Horesh L, Wisnieff R (2019) Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits
Pisinger D (2005) Where are the hard knapsack problems? Comput Op Res 32(9):2271–2284. https://doi.org/10.1016/j.cor.2004.03.002
Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2, 79. https://doi.org/10.22331/q-2018-08-06-79
Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2, 79. https://doi.org/10.22331/q-2018-08-06-79
Rezoug A, Bader-El-Den M, Boughaci D (2018) Guided genetic algorithm for the multidimensional knapsack problem. Memet Comput 10(1):29–42. https://doi.org/10.1007/s12293-017-0232-7
Rubio Y, Olvera C, Montiel, O.: Quantum-inspired evolutionary algorithms on ibm quantum experience. Engineering Letters 29(4), 1573–1584, (2021) Publisher Copyright: \({\copyright }\) 2021. International Association of Engineers, All rights reserved
Sapra D, Sharma R, Agarwal AP (2017) Comparative study of metaheuristic algorithms using knapsack problem. In: 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence, pp. 134–137. https://doi.org/10.1109/CONFLUENCE.2017.7943137
Tannu SS, Qureshi MK (2019) Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS ’19, pp. 987–999. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3297858.3304007
Valerii T (2018) An adaptive quantum evolution algorithm for 0-1 knapsack problem. System research and information technologies 77–88. https://doi.org/10.20535/SRIT.2308-8893.2018.2.08
Valerii T, Tkachuk O (2018) Higher-order quantum genetic algorithm for 0–1 knapsack problem. System research and information technologies 52–67. https://doi.org/10.20535/SRIT.2308-8893.2018.3.05https://doi.org/10.20535/SRIT.2308-8893.2018.3.05
Vásquez C, Lemus-Romani J, Crawford B, Soto R, Astorga G, Palma W, Misra S, Paredes F (2020) Solving the 0/1 knapsack problem using a galactic swarm optimization with data-driven binarization approaches. In: Gervasi O, Murgante B, Misra S, Garau C, Blečić I, Taniar D, Apduhan BO, Rocha AMAC, Tarantino E, Torre CM, Karaca Y (eds) Computational Science and Its Applications - ICCSA 2020. Springer, Cham, pp 511–526
Wang Y, Wang W (2021) Quantum-inspired differential evolution with grey wolf optimizer for 0–1 knapsack problem. Mathematics. https://doi.org/10.3390/math9111233
Wang H, Liu J, Zhi J, Fu C (2013) The improvement of quantum genetic algorithm and its application on function optimization. Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/730749
Wei Z, Hao J-K (2019) Iterated two-phase local search for the set-union knapsack problem. Futur Gener Comput Syst 101:1005–1017. https://doi.org/10.1016/j.future.2019.07.062
Wei Z, Hao J-K (2021) Kernel based tabu search for the set-union knapsack problem. Expert Syst Appl 165:113802. https://doi.org/10.1016/j.eswa.2020.113802
Williams CP (2011) Explorations in Quantum Computing,
Wu Y, Bao W-S, Cao S, Chen F, Chen M-C, Chen X, Chung T-H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H-L, Huo Y-H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C-Y, Peng C-Z, Zhu X, Pan J-W (2021) Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127:180501. https://doi.org/10.1103/PhysRevLett.127.180501
Xiang S, He Y, Chang L, Wu K, Zhang C (2017) An improved quantum-inspired evolutionary algorithm for knapsack problems. In: Sun X, Chao H-C, You X, Bertino E (eds) Cloud computing and security. Springer, Cham, pp 694–708
Yanofsky N, Manucci M (2008) Quantum Computing for Computer Scientists,
Zhan S, Wang L, Zhang Z, Zhong Y (2020) Noising methods with hybrid greedy repair operator for 0–1 knapsack problem. Memet Comput 12(1):37–50. https://doi.org/10.1007/s12293-019-00288-z
Zhang G (2011) Quantum-inspired evolutionary algorithms: a survey and empirical study. J Heuristics 17:303–351. https://doi.org/10.1007/s10732-010-9136-0
Zhong H-S, Deng Y-H, Qin J, Wang H, Chen M-C, Peng L-C, Luo Y-H, Wu D, Gong S-Q, Su H, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Renema JJ, Lu C-Y, Pan J-W (2021) Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys Rev Lett 127:180502. https://doi.org/10.1103/PhysRevLett.127.180502
Funding
This work has been founded by Instituto Politécnico Nacional under Grant Numbers SIP20210320 and SIP20220079. We also thanks to the Comisión de Fomento y Apoyo Académico del IPN (COFAA), and the Mexican National Council of Science and Technology (CONACYT) for supporting our research activities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they do not have any conflict of interest.
Additional information
Communicated by Oscar Castillo.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ballinas, E., Montiel, O. Hybrid quantum genetic algorithm with adaptive rotation angle for the 0-1 Knapsack problem in the IBM Qiskit simulator. Soft Comput 27, 13321–13346 (2023). https://doi.org/10.1007/s00500-022-07460-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-07460-7