Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two new heuristic approaches for optimal path calculation on occupancy grid map

Zwei neue heuristische Ansätze für eine optimale Bahnplanung anhand des Occupancy Grid Plans

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

A broader industrial application of mobile intelligent robots fails, especially at small and medium enterprises, because of its high cost. Therefore, worldwide current research is focused on developing “affordable—Cost-oriented (COR)” robots. One contribution to this field of research is to find favorable methods for path planning and navigation. Therefore, in this paper two new methods are presented which can be realized with low-cost hardware and software. Amongst others, these heuristics methods, compared to previously known methods, provide the advantage of low computation time, however, with a small loss of accuracy, negligible for most applications.

Zusammenfassung

Eine breitere industrielle Anwendung von mobilen, intelligenten Robotern, insbesondere in Klein- und Mittelbetrieben, scheitert meist an den derzeit noch hohen Anschaffungskosten. Ein weltweiter, aktueller Forschungsschwerpunkt ist daher die Entwicklung von „bezahlbaren – Cost-oriented (COR)“ Robotern. Ein Beitrag dazu sind preiswerte Methoden zur Bahnplanung und Navigation. In diesem Beitrag werden daher zwei neue Methoden, welche mit einer kostengünstigen Hard- und Software realisierbar sind, vorgestellt. Diese heuristischen Methoden bieten darüber hinaus, gegenüber bisher bekannten, den Vorteil einer geringen Rechenzeit, allerdings mit einem für die meisten Anwendungen vernachlässigbaren Genauigkeitsverlust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Algorithm 3.1
Algorithm 3.2
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Algorithm 4.1
Fig. 9.
Algorithm 4.2

Similar content being viewed by others

References

  1. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M. (2007): Heuristic methods for hypertree decomposition. In Proceedings of the 7th Mexican international conference on artificial intelligence MICAI’08, Mexico (pp. 1–11).

    Google Scholar 

  2. Gottlob, G., Leone, N., Scarcello, F. (1999): Hypertree decomposition and tractable queries. In PODS’ 99 proceedings of the eighteenth ACM symposium on principle of database systems.

    Google Scholar 

  3. Jeavons, P., Cohen, D., Gysens, M. (1991): A structural decomposition of hypergraphs. Mathematics subject classification.

  4. Latombe, J.-C. (1991): Robot motion planning. Norwood: Kluwer Academic.

    Book  Google Scholar 

  5. Siegwart, R., Nourbakhsh, I. R. (2004): Introduction to autonomous mobile robots. Cambridge: A Bredford Book.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artan Dermaku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermaku, A., Bajrami, X. Two new heuristic approaches for optimal path calculation on occupancy grid map. Elektrotech. Inftech. 130, 54–60 (2013). https://doi.org/10.1007/s00502-013-0132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-013-0132-6

Keywords

Schlüsselwörter