Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Binary bat algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Bat algorithm (BA) is one of the recently proposed heuristic algorithms imitating the echolocation behavior of bats to perform global optimization. The superior performance of this algorithm has been proven among the other most well-known algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO). However, the original version of this algorithm is suitable for continuous problems, so it cannot be applied to binary problems directly. In this paper, a binary version of this algorithm is proposed. A comparative study with binary PSO and GA over twenty-two benchmark functions is conducted to draw a conclusion. Furthermore, Wilcoxon’s rank-sum nonparametric statistical test was carried out at 5 % significance level to judge whether the results of the proposed algorithm differ from those of the other algorithms in a statistically significant way. The results prove that the proposed binary bat algorithm (BBA) is able to significantly outperform others on majority of the benchmark functions. In addition, there is a real application of the proposed method in optical engineering called optical buffer design at the end of the paper. The results of the real application also evidence the superior performance of BBA in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  2. Holland J (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor, Michigan

    Google Scholar 

  3. Kirkpatrick S, Gelati CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MATH  MathSciNet  Google Scholar 

  4. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41

    Article  Google Scholar 

  5. Rashedi E, Nezamabadi S, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  6. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    MATH  Google Scholar 

  7. Kaveh A, Share MAM, Moslehi M (2013) Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech 224:85–107

    MATH  Google Scholar 

  8. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  9. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70

    Google Scholar 

  10. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82

    Google Scholar 

  11. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization (NICSO 2010), vol 284. Springer, Berlin, pp 65–74

  12. Pal A, Maiti J (2010) Development of a hybrid methodology for dimensionality reduction in Mahalanobis–Taguchi system using Mahalanobis distance and binary particle swarm optimization. Expert Syst Appl 37:1286–1293

    Google Scholar 

  13. Babaoglu İ, Findik O, Ülker E (2010) A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst Appl 37:3177–3183

    Google Scholar 

  14. Qiao L-Y, Peng X-Y, Peng Y (2006) BPSO-SVM wrapper for feature subset selection. Dianzi Xuebao (Acta Electronica Sinica) 34:496–498

    Google Scholar 

  15. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. J Simul 76:60–68

    Google Scholar 

  16. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MATH  MathSciNet  Google Scholar 

  17. Tayarani-N MH, Akbarzadeh-T MR (2008) Magnetic optimization algorithms a new synthesis. In: IEEE congress on evolutionary computation, pp 2659–2664

  18. Wang L, Xu Y, Mao Y, Fei M (2010) A discrete harmony search algorithm. In: Li K, Li X, Ma S, Irwin GW (eds) Life system modeling and intelligent computing. Communications in computer and information science, vol 98. Springer, Berlin, pp 37–43. http://dx.doi.org/10.1007/978-3-642-15859-9_6

  19. Wang L, Fu X, Menhas MI, Fei M (2010) A modified binary differential evolution algorithm. In: Li K, Fei M, Jia L, Irwin GW (eds) Life system modeling and intelligent computing, Lecture notes in computer science, vol 6329. Springer, Berlin, pp 49–57. http://dx.doi.org/10.1007/978-3-642-15597-0_6

  20. Mirjalili S, Mohd Hashim SZ (2011) BMOA: binary magnetic optimization algorithm. In: 2011 3rd international conference on machine learning and computing (ICMLC 2011), Singapore, 2011, pp 201–206

  21. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) BGSA: binary gravitational search algorithm. Nat Comput 9:727–745

    MathSciNet  Google Scholar 

  22. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on computational cybernetics and simulation, pp 4104–4108

  23. Tasgetiren MF, Suganthan PN, Pan QK (2007) A discrete particle swarm optimization algorithm for the generalized traveling salesman problem. In: 9th annual conference on genetic and evolutionary computation (GECCO ‘07), New York, NY, USA, 2007, pp 158–167

  24. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14. http://dx.doi.org/10.1016/j.swevo.2012.09.002

    Google Scholar 

  25. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Google Scholar 

  26. Yang X-S (ed) (2010) Test problems in optimization. An introduction with metaheuristic applications. Wiley, London

    Google Scholar 

  27. Molga M, Smutnicki C (2005) Test functions for optimization needs. Available at http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

  28. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506

    MATH  MathSciNet  Google Scholar 

  29. Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: IEEE In swarm intelligence symposium pp 68–75

  30. Derrac J, Molina GSD, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Google Scholar 

  31. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non. J Heuristics 15:617–644

    MATH  Google Scholar 

  32. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Google Scholar 

  33. Okawachi Y, Foster MA, Sharping JE, Gaeta AL, Xu Q, Lipson M (2006) All-optical slow-light on a photonic chip. Opt Express 14:2317–2322

    Google Scholar 

  34. Freude W, Brosi J-M, Koos C, Vorreau P, Andreani L, Dumon P, Baets R, Esembeson B, Biaggio I, Michinobu T (2008) Silicon-organic hybrid (SOH) devices for nonlinear optical signal processing. In: Transparent optical networks 2008. ICTON 2008. 10th anniversary international conference on, 2008, pp 84–87

  35. Tucker RS, Ku P-C, Chang-Hasnain CJ (2005) Slow-light optical buffers: capabilities and fundamental limitations. J Lightwave Technol 23:4046

    Google Scholar 

  36. Long F, Tian H, Ji Y (2010) A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J Lightwave Technol 28:1139–1143

    Google Scholar 

  37. Mirjalili SM, Mirjalili S (2012) Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide. Photon Glob Conf (PGC) 2012:1–4. doi:10.1109/PGC.2012.6457997

    Google Scholar 

  38. Dai L, Jiang C (2009) Photonic crystal slow light waveguides with large delay-bandwidth product. Appl Phys B 95:105–111

    Google Scholar 

  39. Hou J, Gao D, Wu H, Hao R, Zhou Z (2009) Flat band slow light in symmetric line defect photonic crystal waveguides. Photon Technol Lett IEEE 21:1571–1573

    Google Scholar 

  40. Kurt H, Üstün K, Ayas L (2010) Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Opt Express 18:26965–26977

    Google Scholar 

  41. Zhai Y, Tian H, Ji Y (2011) Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide. Lightwave Technol J 29:3083–3090

    Google Scholar 

  42. Guo S, Albin S (2003) Simple plane wave implementation for photonic crystal calculations. Opt Express 11:167–175

    Google Scholar 

  43. Säynätjoki A, Mulot M, Ahopelto J, Lipsanen H (2007) Dispersion engineering of photonic crystal waveguides with ring-shaped holes. Opt Express 15:8323–8328

    Google Scholar 

  44. Wang D, Zhang J, Yuan L, Lei J, Chen S, Han J, Hou S (2011) Slow light engineering in polyatomic photonic crystal waveguides based on square lattice. Opt Commun 284:5829–5832

    Google Scholar 

  45. Engelen R, Sugimoto Y, Watanabe Y, Korterik JP, Ikeda N, van Hulst NF, Asakawa K, Kuipers L (2006) The effect of higher order dispersion on slow light propagation in photonic crystal waveguides. In: Lasers and electro-optics, 2006 and 2006 quantum electronics and laser science conference. CLEO/QELS 2006. conference on, 2006, pp 1–2

  46. Frandsen LH, Lavrinenko A, Fage-Pedersen J, Borel PI (2006) Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt Express 14:9444–9450

    Google Scholar 

  47. Kuramochi E, Notomi M, Hughes S, Shinya A, Watanabe T, Ramunno L (2005) Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys Rev B 72:161318

    Google Scholar 

  48. Mirjalili SM, Abedi K, Mirjalili S (2013) Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Opt - Int J Light Electron Opt 124:5989–5993. doi:10.1016/j.ijleo.2013.04.114

    Google Scholar 

  49. Mirjalili SM, Mirjalili S, Lewis A, Abedi K (2013) A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides. Photonics Nanostructures-Fundam Appl. doi:10.1016/j.photonics.2013.11.001

    MATH  Google Scholar 

  50. Mirjalili SM, Mirjalili S, Lewis A (2013) A novel multi-objective optimization framework for designing photonic crystal waveguides. IEEE Photonics Technol Lett 99:1041–1135. doi:10.1109/LPT.2013.2290318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirjalili, S., Mirjalili, S.M. & Yang, XS. Binary bat algorithm. Neural Comput & Applic 25, 663–681 (2014). https://doi.org/10.1007/s00521-013-1525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1525-5

Keywords