Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel complex-valued bat algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Bat algorithm is a recent optimization algorithm with quick convergence, but its population diversity can be limited in some applications. This paper presents a new bat algorithm based on complex-valued encoding where the real part and the imaginary part will be updated separately. This approach can increase the diversity of the population and expands the dimensions for denoting. The simulation results of fourteen benchmark test functions show that the proposed algorithm is effective and feasible. Compared to the real-valued bat algorithm or particle swarm optimization, the proposed algorithm can get high precision and can almost reach the theoretical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithm. IEEE Trans Syst Man Cybern 24(4):656–667

    Article  Google Scholar 

  2. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Francisco

    Google Scholar 

  3. Coloni A, Dorigo M, Maniezzo V (1996) Ant system: optimization by a colony of cooperating agent. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41

    Article  Google Scholar 

  4. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. IEEE Press, Piscataway, NJ, pp 1942–1948

  5. Wen-hua Cui, Xiao-bing Liu, Wei Wang, Jie-sheng Wang (2012) Survey on shuffled frog leaping algorithm. Control Decis 27(4):481–486

    MathSciNet  Google Scholar 

  6. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  7. Xiao-lei Li, Zhi-jiang Shao, Ji-xin Qian (2002) An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38 (in Chinese)

    Google Scholar 

  8. Yang XS, Deb S (2009) Cuckoo search via Lévy Flights. In: Proceedings of world congress on nature & biologically inspired computing. IEEE Press, Coimbatore, pp 210–214

  9. Rui-qing Zhao, Wan-sheng Tang (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):164–175

    Google Scholar 

  10. Yang XS (2009) Firefly algorithms for multimodal optimization. Stoch Algorithms Found Appl Lect Notes Comput Sci 5792:169–178

    Article  Google Scholar 

  11. Krishnanand KN, Ghose D (2009) Glowworm swarm optimization: a new method for optimizing multi-modal functions. Int J Comput Intell Stud 1(1):93–119

    Article  Google Scholar 

  12. Zhou Y, Zhou G, Zhang J (2013) A hybrid glowworm swarm optimization algorithm to solve constrained multimodal functions optimization. Optimization 1–24 (published online)

  13. Zhou Y, Luo Q, Liu J (2013) Glowworm swarm optimization for dispatching system of public transit vehicles. Neural Process Lett 1–9 (published online)

  14. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization, NICSO 2010, SCI:284, pp 65–74

  15. Yang XS (2011) Nature-inspired metaheuristic algorithms. Luniver Press, Frome

    Google Scholar 

  16. Zhou Y, Xie J, Zheng H (2013) A hybrid bat algorithm with path relinking for capacitated vehicle routing Problem. Math Probl Eng 2013:2013

    MathSciNet  Google Scholar 

  17. Xie J, Zhou Y, Zheng H (2013) A hybrid metaheuristic for multiple runways aircraft landing problem based on bat algorithm. J Appl Math 2013:2013

    Google Scholar 

  18. Gandomi AmirHossein, Yang Xin-She, Alavi AmirHossein, Talatahari Siamak (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22:1239–1255

    Article  Google Scholar 

  19. Yang XS, Gandomi AH (2013) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  20. Kaveh A, Zakian P (2014) Enhanced bat algorithm for optimal design of skeletal structures. Asian J Civial Eng 15(2):179–212

    Google Scholar 

  21. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274

    Google Scholar 

  22. He X-s, Ding W-j, Yang X-s (2013) Bat algorithm based on simulated annealing and gaussian perturbations. Neural Comput Appl (published online)

  23. Casasent D, Natarajan S (1995) A classifier neural network with complex-valued weights and square-law nonlinearities. Neural Netw 8(6):989–998

    Article  Google Scholar 

  24. De-bao Chen, Huai-jiang Li, Zheng Li (2009) Particle swarm optimization based on complex-valued encoding and application in function optimization. Comput Eng Appl 45(10):59–61 (in Chinese)

    Google Scholar 

  25. Zhao-hui Zheng, Yan Zhang, Yu-huang Qiu (2003) Genetic algorithm based on complex-valued encoding. Control Theory Appl 20(1):97–100 (in Chinese)

    Google Scholar 

  26. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  27. Pei-chong Wang, Qian Xu, Yue W (2009) Overview of differential evolution algorithm. Comput Eng Appl 45(28):13–16 (in Chinese)

    Google Scholar 

  28. Yang XS (2010) Appendix a: Test problems in optimization. In: Yang XS (ed) Engineering optimization. John, Hoboken, pp 261–266

    Chapter  Google Scholar 

  29. Tang K, Yao X, Suganthan PN et al (2007) Benchmark functions for the CEC’ 2008 special session and competition on large scale global optimization. University of Science and Technology of China, Hefei

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China under Grant No. 61165015. Key Project of Guangxi Science Foundation under Grant No. 2012GXNSFDA053028, Key Project of Guangxi High School Science Foundation under Grant Nos. 20121ZD008, 201203YB072, funded by Open Research Fund Program of Key Lab of Intelligent Perception and Image Understanding of Ministry of Education of China under Grant No. IPIU01201100 and the Innovation Project of Guangxi Graduate Education under Grant No. gxun-chx2012103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhou, Y. A novel complex-valued bat algorithm. Neural Comput & Applic 25, 1369–1381 (2014). https://doi.org/10.1007/s00521-014-1624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1624-y

Keywords