Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Development of an adaptive relevance vector machine approach for slope stability inference

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Uncertainty is commonly encountered in such problems as the stability inference of slopes in earth science and geotechnical engineering. This uncertainty can be approached by the artificial intelligence techniques and experts systems. This paper presents the adaptive relevance vector machine (ARVM) for stability inference of soil slopes. Based on failure mechanisms and due to data availability, the stability inference here is realized according to the three categories of slope parameters: (1) geomaterial parameters, (2) slope geometry parameters, and (3) the pore pressure coefficient R u . A database of dozens of slope cases is collected to reasonably execute the stability inference. Then, the ARVM is introduced to approach the problem. Some cases in the database are used to train the ARVM model so that an optimized ARVM model can be obtained. Some other cases are then used to test the inference ability of the optimized model. Four models obtained by different numbers of cases are compared to show possible effects of dataset size. Also, the sensitivity of the ARVM parameters is investigated. The results show that the width hyper-parameter has apparent effects on the performance of the ARVMs, and the kernel type as well as the dataset size can result in different optimal hyper-parameter values. Meanwhile, the ARVM is compared to other techniques such as the generalized regression neural network and the support vector machines (SVM) for the stability inference of the slope cases by the inference accuracy function. The results suggest that the ARVMs have satisfactory generalization ability and perform better than the simple SVM and the applied neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32(1):1–23

    Article  Google Scholar 

  2. Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  3. Liu Z, Xu W, Shao J (2012) Gauss process based approach for application on landslide displacement analysis and prediction. CMES 84(2):99–122

    Google Scholar 

  4. Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards 65(1):315–330

    Article  Google Scholar 

  5. Liu Z, Shao J, Xu W, Chen H, Shi C (2013) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides. doi:10.1007/s10346-013-0443-z

    Google Scholar 

  6. Trivedi R, Vishal V, Pradhan SP, Singh TN, Jhanwar JC (2012) Slope stability analysis in Limestone mines. Int J Earth Sci Eng 5(4):759–766

    Google Scholar 

  7. Ahangar-Asr A, Faramarzi A, Javadi AA (2010) A new approach for prediction of the stability of soil and rock slopes. Eng Comput 27(7):878–893. doi:10.1108/02644401011073700

    Article  MATH  Google Scholar 

  8. Abbas D, Ataeib M, Sereshki F (2011) Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system. Appl Soft Comput 11(8):4465–4473

    Article  Google Scholar 

  9. Singh PK, Wasnik AB, Kainthola A, Sazid M, Singh TN (2013) The stability of road cut cliff face along SH-121: a case study. Nat Hazards 68(2):497–507

    Article  Google Scholar 

  10. Grelle G, Guadagno FM (2012) Regression analysis for seismic slope instability based on a double phase viscoplastic sliding model of the rigid block. Landslides 1–15. doi:10.1007/s10346-012-0350-8

  11. Singh TN, Kainthola A, Venkatesh A (2012) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45(2):259–264

    Article  Google Scholar 

  12. Rajabzadeh MA, Moosavinasab Z, Rakhshandehroo G (2012) Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech Rock Eng 45(1):113–122. doi:10.1007/s00603-011-0169-y

    Article  Google Scholar 

  13. Rezaei M, Majdi A, Monjezi M (2014) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 24(1):233–241. doi:10.1007/s00521-012-1221-x

    Article  Google Scholar 

  14. Majdi A, Rezaei M (2012) Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Comput Appl 1–9. doi:10.1007/s00521-012-0925-2

  15. Ikizler SB, Vekli M, Dogan E, Aytekin M, Kocabas F (2012) Prediction of swelling pressures of expansive soils using soft computing methods. Neural Comput Appl 1–13. doi:10.1007/s00521-012-1254-1

  16. Edincliler A, Cabalar A, Cagatay A, Cevik A (2012) Triaxial compression behavior of sand and tire wastes using neural networks. Neural Comput Appl 21(3):441–452. doi:10.1007/s00521-010-0430-4

    Article  Google Scholar 

  17. Liu Z, Shao J, Xu W, Shi C (2013) Estimation of elasticity of porous rock based on mineral composition and microstructure. Adv Mater Sci Eng 512727:1–10. doi:10.1155/2013/512727

    Google Scholar 

  18. Khandelwal M, Singh TN (2013) Application of an expert system to predict maximum explosive charge used per delay in surface mining. Rock Mech Rock Eng 46(6):1551–1558

  19. Aladag CH, Kayabasi A, Gokceoglu C (2013) Estimation of pressuremeter modulus and limit pressure of clayey soils by various artificial neural network models. Neural Comput Appl 23(2):333–339

    Article  Google Scholar 

  20. Liu Z, Shao J, Xu W, Zhang Y, Chen H (2014) Prediction of elastic compressibility of rock material with soft computing techniques. Appl Soft Comput 22:118–125. doi:10.1016/j.asoc.2014.05.009

    Article  Google Scholar 

  21. Liu Z, Shao J, Xu W, Wu Q (2014) Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine. Acta Geotech 1–13. doi:10.1007/s11440-014-0316-1

  22. Liu Z, Shao J, Xu W, Meng Y (2013) Prediction of rock burst classification using the technique of cloud models with attribution weight. Nat Hazards 68(2):549–568. doi:10.1007/s11069-013-0635-9

    Article  Google Scholar 

  23. Zolfaghari AR, Heath AC, McCombie PF (2005) Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput Geotech 32(3):139–152

    Article  Google Scholar 

  24. Das SK (2005) Slope stability analysis using genetic algorithm. Electron J Geotech Eng 10(A). http://www.ejge.com/2005/Ppr0504/Ppr0504.htm

  25. Qian J, Yin Z (1995) Principle and Calculation of Geotextile, 2nd edn. China WaterPower Press, Nanjing

    Google Scholar 

  26. Chen Z-Y, Morgenstern NR (1983) Extensions to the generalized method of slices for stability analysis. Can Geotech J 20(1):104–119. doi:10.1139/t83-010

    Article  Google Scholar 

  27. Singh TN, Gulati A, Dontha L, Bhardwaj V (2008) Evaluating cut slope failure by numerical analysis—a case study. Nat Hazards 47(2):263–279

    Article  Google Scholar 

  28. Sarkar K, Singh TN, Verma AK (2012) A numerical simulation of landslide-prone slope in Himalayan region-a case study. Arab J Geosci 5(1):73–81

  29. Verma D, Thareja R, Kainthola A, Singh TN (2011) Evaluation of open pit mine slope stability analysis. Int J Earth Sci Eng 4(4):590–600

    Google Scholar 

  30. Liu Z, Shao J, Xu W, Chen H, Zhang Y (2014) An extreme learning machine approach for slope stability evaluation and prediction. Nat Hazards 1–18. doi:10.1007/s11069-014-1106-7

  31. Lu P, Rosenbaum MS (2003) Artificial neural networks and grey systems for the prediction of slope stability. Nat Hazards 30(3):383–398

    Article  Google Scholar 

  32. Liu ZB, Xu WY, Meng YD, Chen H (2009) Modification of GM (1, 1) and its application in analysis of slope deformation. In: Proc. of 2009 IEEE Int. Con. on GSIS, Nanjing, China, pp 415–419

  33. Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using Back Propagation Neural Networks. Eng Geol 80(7):302–315

    Article  Google Scholar 

  34. Sakellariou MG, Ferentinou MD (2005) A study of slope stability prediction using neural networks. Geotech Geol Eng 24(3):419–445

    Article  Google Scholar 

  35. Choobbasti AJ, Farrokhzad F, Barari A (2009) Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arab J Geosci 2(4):311–319

    Article  Google Scholar 

  36. Lin HM, Chang SK, Wu JH, Juang CH (2009) Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: Pre- and post-earthquake investigation. Eng Geol 104(3–4):280–289. doi:10.1016/j.enggeo.2008.11.007

    Article  Google Scholar 

  37. Kaunda R, Chase R, Kehew A, Kaugars K, Selegean J (2010) Neural network modeling applications in active slope stability problems. Environ Earth Sci 60(7):1545–1558. doi:10.1007/s12665-009-0290-3

    Article  Google Scholar 

  38. Das S, Biswal R, Sivakugan N, Das B (2011) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 64(1):201–210. doi:10.1007/s12665-010-0839-1

    Article  Google Scholar 

  39. Daftaribeshelia A, Ataeib M, Sereshki F (2011) Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system. Appl Soft Comput 11:4465–4473

    Article  Google Scholar 

  40. Chen C, Xiao Z, Zhang G (2011) Stability Assessment Model for Epimetamorphic Rock Slopes based on Adaptive Neuro-Fuzzy Inference System. Electron J Geotech Eng 16(A):93–107

    Google Scholar 

  41. Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

  42. Mohamed T, Kasa A, Mukhlisin M (2012) Prediction of slope stability using statistical method and fuzzy logic. Online J Sci Technol 2(4):68–73

    Google Scholar 

  43. Liu Z, Shao J, Xu W, Xu F (2013) Comprehensive stability evaluation of rock slope using the cloud model-based approach. Rock Mech Rock Eng. doi:10.1007/s00603-013-0507-3

    Google Scholar 

  44. Zhao H (2008) Slope reliability analysis using a support vector machine. Comput Geotech 35(3):459–467

    Article  Google Scholar 

  45. Samui P, Kotharib DP (2011) Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci Iran 18(1):53–58

    Article  MATH  Google Scholar 

  46. Zheng Z, Xu W, Xu F, Liu Z (2012) Forecasting of slope displacement based on PSO-LSSVM with mixed kernel. Rock Soil Mech 33(5):1421–1426

    Google Scholar 

  47. Xu F, Xu W, Liu Z, Liu K (2011) Slope stability evaluation based on PSO-PP. Chin J Geotech Eng 33(11):1708–1715

    Google Scholar 

  48. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(1):211–244

    MATH  MathSciNet  Google Scholar 

  49. Tipping ME (2000) The relevance vector machine. In: Solla SA, Leen TK, Müller KR (eds) Advances in Neural Information Processing Systems. MIT, Cambridge, pp 652–658

    Google Scholar 

  50. Tipping ME (2004) Bayesian inference: an introduction to principles and practice in machine learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced lectures on machine learning. Lecture notes in computer science, vol 3176. Springer, Heidelberg, pp 41–62. doi:10.1007/978-3-540-28650-9_3

  51. Chao WC (2005) Application of Gaussian processes on slope failure prediction along Alishan Mountain Road. National Taiwan University of Science and Technology, Taiwan

    Google Scholar 

  52. Psorakis I, Damoulas T, Girolami MA (2010) Multiclass Relevance Vector Machines: Sparsity and Accuracy. IEEE Trans Neural Networks 21(10):1588–1597

    Article  Google Scholar 

  53. Samui P (2008) Slope stability analysis: a support vector machine approach. Environ Geol 56:255–267

    Article  Google Scholar 

  54. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the reviewers for their constructive comments that lead to substantial improvements in the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaobao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Z., Zheng, L. et al. Development of an adaptive relevance vector machine approach for slope stability inference. Neural Comput & Applic 25, 2025–2035 (2014). https://doi.org/10.1007/s00521-014-1690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1690-1

Keywords