Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameter extraction of solar cell models using chaotic asexual reproduction optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To simulate solar cell systems or to optimize photovoltaic (PV) system performance, the estimation of solar cell model parameters is extremely crucial. In this paper, the parameter extraction of solar cell models is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured data. A novel chaotic asexual reproduction optimization (CARO) using chaotic sequence for global search is applied to this parameter extraction problem. All the seven or five parameters of solar cell models are extracted simultaneously using measured input–output data. The CARO has been tested with different solar cell models, i.e., double diode, single diode, and PV module. Comparison simulation results with other parameter extraction techniques show that the CARO signifies its potential as another optional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu GY, Nguang SK, Partridge A (2011) A general modeling method for I–V characteristics of geometrically and electrically configured photovoltaic arrays. Energy Convers Manag 52(12):3439–3445

    Article  Google Scholar 

  2. Amrouche B, Guessoum A, Belhamel M (2012) A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl Energy 91(1):395–404

    Article  Google Scholar 

  3. Khan F, Baek SH, Park Y, Kim JH (2013) Extraction of diode parameters of silicon solar cells under high illumination conditions. Energy Convers Manag 76:421–429

    Article  Google Scholar 

  4. Orioli A, Gangi AD (2013) A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl Energy 102(SI):1160–1177

    Article  Google Scholar 

  5. Tian HM, Mancilla-David F, Ellis K, Muljadi E, Jenkins P (2012) A cell-to-module-to-array detailed model for photovoltaic panels. Sol Energy Mater Sol Cells 86(9):2695–2706

    Google Scholar 

  6. Cubas J, Pindado S, Victoria M (2014) On the analytical approach for modeling photovoltaic systems behavior. J Power Sources 247:467–474

    Article  Google Scholar 

  7. Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Sol Energy 4(1):1–12

    Google Scholar 

  8. Kim W, Choi W (2010) A novel parameter extraction method for the one-diode solar cell model. Sol Energy 84(6):1008–1019

    Article  Google Scholar 

  9. Das AK (2012) Analytical derivation of explicit J–V model of a solar cell from physics based implicit model. Sol Energy 86(1):26–30

    Article  Google Scholar 

  10. Lun SX, Du CJ, Yang GH, Wang S, Guo TT, Sang JS, Li JP (2013) An explicit approximate I–V characteristic model of a solar cell based on pad\(\acute{e}\) approximants. Sol Energy 92:147–159

    Article  Google Scholar 

  11. Lun SX, Du CJ, Guo TT, Wang S, Sang JS, Li JP (2013) A new explicit I–V model of a solar cell based on Taylor’s series expansion. Sol Energy 94:221–232

    Article  Google Scholar 

  12. Bayhan H, Bayhan M (2011) A simple approach to determine the solar cell diode ideality factor under illumination. Sol Energy 85(5):769–775

    Article  Google Scholar 

  13. Ghani F, Duke M, Carson J (2013) Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: experimental evaluation. Sol Energy 87:246–253

    Article  Google Scholar 

  14. Ghani F, Duke M, Carson J (2013) Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function. Sol Energy 91:422–431

    Article  Google Scholar 

  15. Chen YF, Wang XM, Li D, Hong RJ, Shen H (2011) Parameters extraction from commercial solar cells I–V characteristics and shunt analysis. Appl Energy 88(6):2239–2244

    Article  Google Scholar 

  16. Peng LL, Sun YZ, Meng Z, Wang YL, Xu Y (2013) A new method for determining the characteristics of solar cells. J Power Sources 227:131–136

    Article  Google Scholar 

  17. Karatepe E, Boztepe M, Colak M (2006) Neural network based solar cell model. Energy Convers Manag 47(9-10):1159–1178

    Article  Google Scholar 

  18. Patra JC (2011) Neural network-based model for dual-junction solar cells. Progress in Photovoltaics 19(1):33–44

    Article  MathSciNet  Google Scholar 

  19. Patra JC (2011) Chebyshev neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers 26(1):132–139

    Article  Google Scholar 

  20. Fathabadi H (2013) Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics. Energy Convers Manag 76:253–259

    Article  Google Scholar 

  21. Bonanno F, Capizzi G, Graditi G, Napoli C, Tina GM (2012) A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl Energy 97(SI):956–961

    Article  Google Scholar 

  22. Zagrouba M, Sellami A, Bouaicha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy 84(5):860–866

    Article  Google Scholar 

  23. Ye M, Wang X, Xu Y (2009) Parameter extraction of solar cells using particle swarm optimization. J Appl Phys 105(9):094502

    Article  MathSciNet  Google Scholar 

  24. Huang W, Jiang C, Xue L, Song D (2011) Extracting solar cell model parameters based on chaos particle swarm algorithm. In: Proceedings of international conference on electric information and control engineering (ICEICE), pp 398–402

  25. AlRashidi MR, AlHajri MF, El-Naggar KM, Al-Othman AK (2011) A new estimation approach for determining the I–V characteristics of solar cells. Sol Energy 85(7):1543–1550

    Article  Google Scholar 

  26. AlHajri MF, El-Naggar KM, AlRashidi MR, Al-Othman AK (2012) Optimal extraction of solar cell parameters using pattern search. Renew Energy 44:238–245

    Article  Google Scholar 

  27. Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol Energy 94:209–220

    Article  Google Scholar 

  28. El-Naggar KM, AlRashidi MR, AlHajri MF, Al-Othman AK (2012) Simulated Annealing algorithm for photovoltaic parameters identification. Sol Energy 86(1):266–274

    Article  Google Scholar 

  29. Askarzadeh A, Rezazadeh A (2013) Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl Energy 102(SI):943–949

    Article  Google Scholar 

  30. Farasat A, Menhaj MB, Mansouri T, Moghadam MRS (2010) ARO: a new model-free optimization algorithm inspired from asexual reproduction. Appl Soft Comput 10(4):1284–1292

    Article  Google Scholar 

  31. Mansouri T, Farasat A, Menhaj MB, Moghadam MRS (2011) ARO: a new model free optimization algorithm for real time applications inspired by the asexual reproduction. Expert Syst Appl 38(5):4866–4874

    Article  Google Scholar 

  32. Khanteymoori AR, Menhaj MB, Homayounpour MM (2011) Structure learning in Bayesian networks using asexual reproduction optimization. ETRI J 33(1):39–49

    Article  Google Scholar 

  33. Asl AN, Menhaj MB, Sajedin A (2014) Control of leader–follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO). Appl Soft Comput 14:563–576

    Article  Google Scholar 

  34. Yuan XF, Yang YM, Wang H (2012) Improved parallel chaos optimization algorithm. Appl Math Comput 219(8):3590–3599

    Article  MathSciNet  Google Scholar 

  35. Tatsumi K, Ibuki T, Tanino T (2013) A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions. Appl Math Comput 219(17):8991–9011

    Article  MATH  MathSciNet  Google Scholar 

  36. Yang DX, Liu ZJ, Zhou JL (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246

    Article  MathSciNet  Google Scholar 

  37. Ma S (2012) Chaotic populations in genetic algorithm. Appl Soft Comput 12(8):2409–2424

    Article  Google Scholar 

  38. Li Y, Wen Q, Zhang B (2012) Chaotic ant swarm optimization with passive congregation. Nonlinear Dyn 68(1-2):129–136

    Article  MATH  MathSciNet  Google Scholar 

  39. Gao SC, Vairappan C, Wang Y, Cao QP, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    Article  MathSciNet  Google Scholar 

  40. Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699

    Article  MATH  Google Scholar 

  41. Baykasoglu Adil (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067

    Article  Google Scholar 

  42. Bouzidi K, Chegaar M, Nehaoua N (2007) New method to extract the parameters of solar cells from their illuminated I–V curve. In: 4th international conference on computer integrated manufacturing

  43. Chegaar M, Nehaoua N, Bouhemadou A (2008) Organic and inorganic solar cells parameters evaluation from single I–V plot. Energy Convers Manag 49(6):1376–1379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., He, Y. & Liu, L. Parameter extraction of solar cell models using chaotic asexual reproduction optimization. Neural Comput & Applic 26, 1227–1239 (2015). https://doi.org/10.1007/s00521-014-1795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1795-6

Keywords