Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigations of fin geometry on heat exchanger performance by simulation and optimization methods for diesel exhaust application

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, three cases of heat exchangers (HEXs) in the exhaust of a diesel engine are modeled numerically for improving the exergy recovery amount. Simple double pipes, longitudinal and circular finned-tube HEXs are modeled to study the fin effect in waste heat recovery amount. It is tried to compare the circular and longitudinal fin’s effect (with the same surface area) on exergy recovery and pressure drop in the exhaust. As a main outcome, results show that circular fins cannot enhance exergy recovery due to trapping the gases between them and producing a high pressure drop compared to longitudinal fins. Also, L16 Taguchi array is applied to find the most important parameters in longitudinal fins to find the optimum design for this heat exchanger. Finally, a multi-objective optimization by central composite design is applied to find the optimum dimensions of proposed HEX in different engine loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Saidur R, Rahim NA, Ping HW, Jahirul MI, Mekhilef S, Masjuki HH (2009) Energy and emission analysis for industrial motors in Malaysia. Energy Policy 37(9):3650–3658

    Article  Google Scholar 

  2. Hasanuzzaman M, Rahim NA, Saidur R, Kazi SN (2011) Energy savings and emissions reductions for rewinding and replacement of industrial motor. Energy 36(1):233–240

    Article  Google Scholar 

  3. Ghazikhani M, Hatami M, Safari B (2014) The effect of alcoholic fuel additives on exergy parameters and emissions in a two stroke gasoline engine. Arab J Sci Eng. doi:10.1007/s13369-013-0738-3

    Google Scholar 

  4. Ghazikhani M, Hatami M, Safari B (2014) Effect of speed and load on exergy recovery in a water-cooled two stroke gasoline–ethanol engine for the bsfc reduction purposes. Sci Iran 21(1):171–180

    Google Scholar 

  5. Kiwan S, Al-Nimr M (2001) Using porous fins for heat transfer enhancement. ASME J Heat Transf 123(4):790–795

    Article  Google Scholar 

  6. Kiwan S (2007) Effect of radiative losses on the heat transfer from porous fins. Int J Thermal Sci 46:1046–1055

    Article  Google Scholar 

  7. Hatami M, Ganji DD (2013) Thermal performance of circular convective−radiative porous fins with different section shapes and materials. Energy Convers Manag 76:185–193

    Article  Google Scholar 

  8. Hatami M, Hasanpour A, Ganji DD (2013) Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers Manag 74:9–16

    Article  Google Scholar 

  9. Hatami M, Ganji DD (2014) Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method. Energy Convers Manag 78:347–358

    Article  Google Scholar 

  10. Ghazikhani M, Hatami M, Ganji DD, Gorji-Bandpy M, Shahi G, Behravan A (2014) Exergy recovery from the exhaust cooling in a DI diesel engine for BSFC reduction purposes. Energy 65:44–51

    Article  Google Scholar 

  11. Pandiyarajan V, Chinna Pandian M, Malan E, Velraj R, Seeniraj RV (2011) Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energy 88:77–87

    Article  Google Scholar 

  12. Lee S, Bae C (2008) Design of a heat exchanger to reduce the exhaust temperature in a spark-ignition engine. Int J Therm Sci 47:468–478

    Article  Google Scholar 

  13. Zhang HG, Wang EH, Fan BY (2013) Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery. Energy Convers Manag 65:438–447

    Article  Google Scholar 

  14. Hossain SN, Bari S (2013) Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle. Energy Conv Manag 75:141–151

    Article  Google Scholar 

  15. Bari S, Hossain SN (2013) Waste heat recovery from a diesel engine using shell and tube heat exchanger. Appl Thermal Eng 61:355–363

    Article  Google Scholar 

  16. Mavridou S, Mavropoulos GC, Bouris D, Hountalas DT, Bergeles G (2010) Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements. Appl Therm Eng 30:935–947

    Article  Google Scholar 

  17. Kauranen P, Elonen T, Wikström L, Heikkinen J, Laurikko J (2010) Temperature optimization of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage). Appl Therm Eng 30:631–638

    Article  Google Scholar 

  18. Baker C, Vuppuluri P, Shi L, Hall M (2012) Model of heat exchangers for waste heat recovery from diesel engine exhaust for thermoelectric power generation. J Electr Mater 41(6):1290–1297

    Article  Google Scholar 

  19. Ramesh Kumar C, Sonthalia A, Goel R (2011) Experimental study on waste heat recovery from an internal combustion engine using thermoelectric technology. Thermal Sci 15(4):1011–1022

    Article  Google Scholar 

  20. Deng YD, Liu X, Chen S, Tong NQ (2013) Thermal optimization of the heat exchanger in an automotive exhaust-based thermoelectric generator. J Electr Mater 42(7):1634–1640

    Article  Google Scholar 

  21. Zhang J-F, He Y-L, Tao W-Q (2009) 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles—part I: numerical model and results of whole heat exchanger with middle-overlapped helical baffles. Int J Heat Mass Transf 52:5371–5380

    Article  MATH  Google Scholar 

  22. FLUENT 6.3 user’s guide, FLUENT Inc. 2006

  23. Perry RH (1984) Perry’s chemical engineers’ handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  24. Hatami M, Ganji DD, Gorji-Bandpy M (2014) Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Stud Thermal Eng 4:53–64

    Article  Google Scholar 

  25. Hatami M, Ganji DD, Gorji-Bandpy M (2014) CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger. Neural Comput Appl 25(7–8):2079–2090

    Article  Google Scholar 

  26. Patankar SV (ed) (1980) Numerical heat transfer and fluid flow. McGrawHill, NewYork

    MATH  Google Scholar 

  27. Hatami M, Ganji DD, Gorji-Bandpy M (2014) A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renew Sustain Energy Rev 37:168–181

    Article  Google Scholar 

  28. Hatami M, Ganji DD, Gorji-Bandpy M (2015) Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition. Appl Thermal Eng 75:580–591

    Article  Google Scholar 

  29. Hatami M, Jafaryar M, Ganji DD, Gorji-Bandpy M (2014) Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int Commun Heat Mass Transf 57:254–263

    Article  Google Scholar 

  30. Jamshidi N, Farhadi M, Ganji DD, Sedighi K (2013) Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers. Appl Therm Eng 51:644–652

    Article  Google Scholar 

  31. Jamshidi N, Farhadi M, Sedighi K, Ganji DD (2012) Optimization of design parameters for nanofluids flowing inside helical coils. Int Commun Heat Mass Transf 39:311–317

    Article  Google Scholar 

  32. Zeng M, Tang LH, Lin M, Wang QW (2010) Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl Therm Eng 30:1775–1783

    Article  Google Scholar 

  33. Hsieh C-T, Jang J-Y (2012) Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method. Appl Therm Eng 42:101–110

    Article  Google Scholar 

  34. Hatami M, Ganji DD, Gorji-Bandpy M (2015) Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manag 97:26–41

    Article  Google Scholar 

  35. Hatami M, Ganji DD, Gorji-Bandpy M (2015) Experimental investigations of diesel exhaust exergy recovery using delta winglet vortex generator heat exchanger. Int J Therm Sci 93:52–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hatami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, M., Ganji, D.D. & Gorji-Bandpy, M. Investigations of fin geometry on heat exchanger performance by simulation and optimization methods for diesel exhaust application. Neural Comput & Applic 27, 1731–1747 (2016). https://doi.org/10.1007/s00521-015-1973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1973-1

Keywords