Abstract
The power quality analysis represents an important aspect in the overall society welfare. The analysis of power disturbances in electrical systems is typically performed in two steps: disturbance detection and disturbance classification. Disturbance detection is usually made through space transform techniques, and their classification is usually performed through artificial intelligence methods. The problem with those approaches is the adequate selection of parameters for these techniques. Due to the advantages of a variant scheme known as the micro-genetic algorithms, in this investigation, a new methodology to directly detect and classify electrical disturbances in one step is developed. The proposed approach is validated through synthetic signals and experimental test on real data, and the obtained results are compared with the particle swarm optimization method in order to show the effectiveness of this methodology.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ramesh M, Laxmi AJ (2012) Fault identification in HVDC using artificial intelligence—recent trends and perspective. In: International conference on power, signals, controls and computation (EPSCICON), pp 1–6. doi:10.1109/EPSCICON.2012.6175256
Wulandhari LA, Wibowo A, Desa MI (2015) Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks. Neural Comput Appl 26:57–65. doi:10.1007/s00521-014-1698-6
Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214. doi:10.1080/09540091.2014.907555
Khan JA, Raja MAZ, Rashidi MM, Syam MI, Wazwaz AM (2015) Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory. Connect Sci 27(4):377–396. doi:10.1080/09540091.2015.1092499
Raja MAZ (2014) Stochastic numerical techniques for solving Troesch’s problem. Inform Sci 279:860–873. doi:10.1016/j.ins.2014.04.036
Wan C, Zhu Z, Zhong W (2012) Genetic algorithms for designing energy-efficient optical transport networks with mixed regenerator placement. In: IEEE international conference on communications (ICC), pp 3015–3019. doi:10.1109/ICC.2012.6363777
Rao SS (2009) Engineering optimization theory and practice. Wiley, New York, pp 693–730
Raja MAZ, Sabir Z, Mehmood N, Aidarous ES, Khan JA (2015) Design of stochastic solvers base on genetic algorithms for solving nonlinear equations. Neural Comp Appl 26:1–23. doi:10.1007/s00521-014-1676-z
Ding S, Zhang Y, Chen J, Jia W (2013) Research on using genetic algorithms to optimize Elman neural networks. Neural Comp Appl 23:293–297. doi:10.1007/s00521-012-0896-3
Jaen-Cuellar AY, Romero-Troncoso RJ, Morales-Velazquez L, Osornio-Rios RA (2013) PID-Controller tuning optimization with genetic algorithms in servo systems. Int J Adv Robot Syst 10:1–14. doi:10.5772/56697
Jaen-Cuellar AY, Morales-Velazquez L, Romero-Troncoso RJ, Osornio-Rios RA (2015) FPGA-based embedded system architecture for micro-genetic algorithms applied to parameters optimization in motion control. Adv Electr Comput Eng 15:23–32. doi:10.4316/AECE.2015.01004
Raja MAZ, Farooq U, Chaudhary NI, Wazwaz AM (2016) Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl Soft Comput 38:561–582. doi:10.1016/j.asoc.2015.10.015
Raja MAZ, Khan JA, Haroon T (2015) Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J Taiwan Inst Chem Eng 48:26–39. doi:10.1016/j.jtice.2014.10.018
Raja MAZ, Shah FH, Khan AA, Khan NA (2015) Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson–Segalman fluid on vertical cylinder for drainage problems. J Taiwan Inst Chem Eng. doi:10.1016/j.jtice.2015.10.020
Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Appl Math Mech 36(12):1611–1638. doi:10.1007/s10483-015-2000-6
Golea NE-H, Melkemi KE, Melkemi M (2011) A novel multi-objective genetic algorithm optimization for blind RGB color image watermarking. In: Seventh international conference on signal-image technology and internet-based systems (SITIS), pp 306–313. doi:10.1109/SITIS.2011.16
Wang S, Xu Z (2013) Increasing the SSO damping effectiveness of IMDU by raising its operating frequency and optimizing its parameters. IEEE Trans Power Syst 28:3134–3144. doi:10.1109/TPWRS.2012.2234145
Wang MH, Tseng YF (2011) A novel analytic method of power quality using extension genetic algorithm and wavelet transform. Expert Syst Appl 38:12491–12496. doi:10.1016/j.eswa.2011.04.032
Sanchez P, Montoya FG, Manzano-Agugliaro F, Gil C (2013) Genetic algorithm for S-transform optimization in the analysis and classification of electrical signal perturbations. Expert Syst Appl 40:6766–6777. doi:10.1016/j.eswa.2013.06.055
Baier CR, Espinoza JR, Rivera M, Munoz JA, Wu B, Melin PE, Yaramasu V (2014) Improving power quality in cascade multilevel converters based on single-phase nonregenerative power cells. IEEE Trans Ind Electron 61:4498–4509. doi:10.1109/TIE.2013.2289866
Javadi A, Al-Haddad K (2015) A single-phase active device for power quality improvement of electrified transportation. IEEE Trans Ind Electron 62:3033–3041. doi:10.1109/TIE.2015.2402639
Honrubia-Escribano A, Gómez-Lázaro E, Molina-Garcia A, Martín-Martínez S (2014) Load influence on the response of AC-contactors under power quality disturbances. Int J Electr Power 63:846–854. doi:10.1016/j.ijepes.2014.06.056
Valtierra-Rodriguez M, Romero-Troncoso RJ, Osornio-Rios RA, Garcia-Perez A (2014) Detection and classification of single and combined power quality disturbances using neural networks. IEEE Trans Ind Electron 61:2473–2482. doi:10.1109/TIE.2013.2272276
Torabian-Esfahani M, Hosseinian SH, Vahidi B (2015) A new optimal approach for improvement of active power filter using FPSO for enhancing power quality. Int J Electr Power 69:188–199. doi:10.1016/j.ijepes.2014.12.078
Ji TY, Wu QH, Jiang L, Tang WH (2011) Disturbance detection, location and classification in phase space. IET Gener Transm Distrib 5:257–265. doi:10.1049/iet-gtd.2010.0254
Hajian M, Foroud AA, Abdoos AA (2014) New automated power quality recognition system for online/offline monitoring. Neurocomputing 128:389–406. doi:10.1016/j.neucom.2013.08.026
Saini MK, Kapoor R (2012) Classification of power quality events—a review. Int J Electr Power 43:11–19. doi:10.1016/j.ijepes.2012.04.045
Mahela OP, Shaik AG, Gupta N (2015) A critical review of detection and classification of power quality events. Renew Sustain Energy Rev 41:495–505. doi:10.1016/j.rser.2014.08.070
Tse NCF, Chan JYC, Wing-Hong L, Poon JTY, Lai LL (2012) Real-time power-quality monitoring with hybrid sinusoidal and lifting wavelet compression algorithm. IEEE Trans Power Deliv 27:1718–1726. doi:10.1109/TPWRD.2012.2201510
Soo-Hwan C, Chang-Hyun P, Han J, Jang G (2012) A waveform distortion evaluation method based on a simple half-cycle RMS calculation. IEEE Trans Power Deliv 27:1461–1467. doi:10.1109/TPWRD.2012.2190304
Chang GW, Min-Fu S, Yi-Ying C, Yi-Jie L (2014) A hybrid wavelet transform and neural-network-based approach for modelling dynamic voltage-current characteristics of electric arc furnace. IEEE Trans Power Deliv 29:815–824. doi:10.1109/TPWRD.2013.2280397
De Yong D, Bhowmik S, Magnago F (2015) An effective power quality classifier using wavelet transform and support vector machines. Expert Syst Appl 42:6075–6081. doi:10.1016/j.eswa.2015.04.002
Dehghani H, Vahidi B, Naghizadeh RA, Hosseinian SH (2013) Power quality disturbance classification using a statistical and wavelet-based Hidden Markov Model with Dempster–Shafer algorithm. Int J Electr Power 47:368–377. doi:10.1016/j.ijepes.2012.11.005
Latran MB, Teke A (2015) A novel wavelet transform based voltage sag/swell detection algorithm. Int J Electr Power 71:131–139. doi:10.1016/j.ijepes.2015.02.040
Eristi H, Yildirim O, Eristi B, Demir Y (2014) Automatic recognition system of underlying causes of power quality disturbances based on S-transform and extreme learning machine. Int J Electr Power 61:553–562. doi:10.1016/j.ijepes.2014.04.010
Granados-Lieberman D, Valtierra-Rodriguez M, Morales-Hernandez LA, Romero-Troncoso RJ, Osornio-Rios RA (2013) A Hilbert transform-based smart sensor for detection, classification, and quantification of power quality disturbances. Sensors 13:5507–5527. doi:10.3390/s130505507
Afroni MJ, Sutanto D, Stirling D (2013) Analysis of nonstationary power-quality waveforms using iterative Hilbert Huang transform and SAX algorithm. IEEE Trans Power Deliv 28:2134–2144. doi:10.1109/TPWRD.2013.2264948
Abdelsalam AA, Eldesouky AA, Sallam AA (2012) Classification of power system disturbances using linear Kalman filter and fuzzy-expert system. Int J Electr Power 43:688–695. doi:10.1016/j.ijepes.2012.05.052
Granados-Lieberman D, Romero-Troncoso RJ, Cabal-Yepez E, Osornio-Rios RA, Franco-Gasca LA (2009) A real-time smart sensor for high-resolution frequency estimation in power systems. Sensors 9:7412–7429. doi:10.3390/s90907412
Biswal B, Biswal MK, Dash PK, Mishra S (2013) Power quality event characterization using support vector machine and optimization using advanced immune algorithm. Neurocomputing 103:75–86. doi:10.1016/j.neucom.2012.08.031
Abdelsalam AA, Eldesouky AA, Sallam AA (2012) Characterization of power quality disturbances using hybrid technique of linear Kalman filter and fuzzy-expert system. Electr Power Syst Res 83:41–50. doi:10.1016/j.epsr.2011.09.018
Cabal-Yepez E, Valtierra-Rodriguez M, Romero-Troncoso RJ, Garcia-Perez A, Osornio-Rios RA, Miranda-Vidales H, Alvarez-Salas R (2012) FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mech Syst Signal Process 30:123–130. doi:10.1016/j.ymssp.2012.01.021
IEEE Recommended Practices for Monitoring Electric Power Quality, IEEE Std. 1159–2009, 2009
Voltage Characteristics of Electricity Supplied by Public Distribution Systems, Eur. Std. EN 50160, 2002
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jaen-Cuellar, A.Y., Morales-Velazquez, L., Romero-Troncoso, R.d. et al. Micro-genetic algorithms for detecting and classifying electric power disturbances. Neural Comput & Applic 28 (Suppl 1), 379–392 (2017). https://doi.org/10.1007/s00521-016-2355-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-016-2355-z