Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Running-time analysis of evolutionary programming based on Lebesgue measure of searching space

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

There have been many studies on the runtime analysis of evolutionary algorithms in discrete optimization, and however, relatively few homologous results have been obtained on continuous optimization, such as evolutionary programming (EP). This paper presents an analysis of the running time (as approximated by the mean first hitting time) of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov process model. Given a constant variation, we analyze the running-time upper bound of special Gaussian mutation EP and Cauchy mutation EP, respectively. Our analysis shows that the upper bounds are impacted by individual number, problem dimension number, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the mean running time of the considered EPs can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial computation of an exponential and the given polynomial of n. In the end, we present a case study on sphere function, and the experiment validates the theoretical result in the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fogel LJ, Owens AJ, Walsh MJ (1996) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  2. Fogel DB (1991) System identification through simulated evolution: a machine learning approach to modeling. Ginn Press, Washington

    Google Scholar 

  3. Fogel DB (1992) Evolving artificial intelligence. Dissertation, University of California at San Diego

  4. Fogel DB (1993) Applying evolutionary programming to selected traveling salesman problems. Cybern Syst 24(1):27–36

    Article  MathSciNet  Google Scholar 

  5. Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1(1):1–23

    Article  Google Scholar 

  6. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

    MATH  Google Scholar 

  7. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  8. Lee CY, Yao X (2004) Evolutionary programming using mutations based on the Lvy probability distribution. IEEE Trans Evol Comput 8(1):1–13

    Article  Google Scholar 

  9. Rudolph G (2001) Self-adaptive mutations may lead to premature convergence. IEEE Trans Evol Comput 5(4):410–414

    Article  Google Scholar 

  10. Rudolph G (1994) Convergence of non-elitist strategies. Proceedings of the first IEEE conference on evolutionary computation 600:63–66

    Google Scholar 

  11. Rudolph G (1996) Convergence of evolutionary algorithms in general search spaces. Proceedings of IEEE international conference on evolutionary computation 180:50–54

    Article  Google Scholar 

  12. Droste S, Jansen T, Wegener I (2002) On the analysis of the (1 + 1) evolutionary algorithm. Theor Comput Sci 276(1):51–81

    Article  MathSciNet  MATH  Google Scholar 

  13. He J, Yao X (2001) Drift analysis and average time complexity of evolutionary algorithms. Artif Intell 127(1):57–85

    Article  MathSciNet  MATH  Google Scholar 

  14. Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functions. IEEE Trans Evolut Comput 8(2):170–182

    Article  MATH  Google Scholar 

  15. Kumar R, Banerjee N (2006) Analysis of a multiobjective evolutionary algorithm on the 0C1 knapsack problem. Theor Comput Sci 358(1):104–120

    Article  MATH  Google Scholar 

  16. Neumann F (2007) Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. Eur J Oper Res 181(3):1620–1629

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu Y, Zhou ZH (2008) A new approach to estimating the expected first hitting time of evolutionary algorithms. Artif Intell 172(15):1809–1832

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen T, Tang K, Chen G et al (2012) A large population size can be unhelpful in evolutionary algorithms. Theor Comput Sci 436:54–70

    Article  MathSciNet  MATH  Google Scholar 

  19. Lehre PK, Yao X (2012) On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans Evolut Comput 16(2):225–241

    Article  Google Scholar 

  20. Witt C (2008) Population size versus runtime of a simple evolutionary algorithm. Theor Comput Sci 403(1):104–120

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen T, He J, Sun G et al (2009) A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans Syst Man Cybern Part B Cybern 39(5):1092–1106

    Article  Google Scholar 

  22. Yu Y, Yao X, Zhou ZH (2012) On the approximation ability of evolutionary optimization with application to minimum set cover. Artif Intell 180:20–33

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou Y, He J, Nie Q (2009) A comparative runtime analysis of heuristic algorithms for satisfiability problems. Artif Intell 173(2):240–257

    Article  MathSciNet  MATH  Google Scholar 

  24. Oliveto PS, He J, Yao X (2009) Analysis of the-EA for finding approximate solutions to vertex cover problems. IEEE Trans Evol Comput 13(5):1006–1029

    Article  Google Scholar 

  25. Lehre PK, Yao X (2014) Runtime analysis of the (1 + 1) EA on computing unique input output sequences. Inf Sci Int J 259:510–531

    MathSciNet  MATH  Google Scholar 

  26. Lai X, Zhou Y, He J et al (2014) Performance analysis of evolutionary algorithms for the minimum label spanning tree problem. IEEE Trans Evolut Comput 18(6):860–872

    Article  Google Scholar 

  27. Zhou Y, Zhang J, Wang Y (2014) Performance analysis of the \((1+ 1)\) Evolutionary Algorithm for the multiprocessor scheduling problem. Algorithmica 5:1–21

    Google Scholar 

  28. Zhou Y, Lai X, Li K (2014) Approximation and parameterized runtime analysis of Evolutionary Algorithms for the maximum cut problem. IEEE Trans Cybern. doi:10.1109/tcyb.2014.2354343

    Google Scholar 

  29. Witt C (2013) Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combin Probab Comput 22(02):294–318

    Article  MathSciNet  MATH  Google Scholar 

  30. Witt C (2014) Fitness levels with tail bounds for the analysis of randomized search heuristics. Inf Process Lett 114(1):38–41

    Article  MathSciNet  MATH  Google Scholar 

  31. Sudholt D (2013) A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans Evolut Comput 17(3):418–435

    Article  Google Scholar 

  32. Jägerskpper J (2007) Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theor Comput Sci 379(3):329–347

    Article  MathSciNet  Google Scholar 

  33. Jägerskpper J (2008) Lower bounds for randomized direct search with isotropic sampling. Oper Res Lett 36(3):327–332

    Article  MathSciNet  Google Scholar 

  34. Agapie A, Agapie M, Baganu G (2013) Evolutionary algorithms for continuous-space optimisation. Int J Syst Sci 44(3):502–512

    Article  MathSciNet  MATH  Google Scholar 

  35. Agapie A, Agapie M, Rudolph G, Zbaganu G (2013) Convergence of evolutionary algorithms on the n-dimensional continuous space. IEEE Trans Cybern 43(5):1462–1472

    Article  MATH  Google Scholar 

  36. Chen Y, Zou X, He J (2011) Drift conditions for estimating the first hitting times of evolutionary algorithms. Int J Comput Math 88(1):37–50

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61370102, 61370177), Humanity and Social Science Youth Foundation of Ministry of Education of China (14YJCZH216), Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306050), the Fundamental Research Funds for the Central Universities, SCUT (2015PT022) and Guangdong High-level personnel of special support program (2014TQ01X664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Huang.

Appendix: Proof of the Lemmas, Theorems and Corollaries

Appendix: Proof of the Lemmas, Theorems and Corollaries

Proof of Lemma 1

Recall that \(\xi _{t}^{{\text{EP}}}=(\mathbf {v}_{1}^{(t)},\mathbf {v}_{2}^{(t)},\ldots ,\mathbf {v}_{k}^{(t)})\) is a real vector and the status space \(\varOmega _{{\text{EP}}}\) of EP is continuous. Furthermore, \(\xi _{t}^{{\text{EP}}}\) is only dependent on \(\xi _{t-1}^{{\text{EP}}}\) for \(t=0,1,\ldots\), as evidenced by steps 3–6 of the EP process. Hence, \(\{\xi _{t}^{{\text{EP}}}\}_{t=0}^{+\infty }\) is a Markov process.

Proof of Lemma 2

\(\xi _{t}^{{\text{EP}}}\in \varOmega _{{\text{EP}}}^{*}\) when \(\exists (\mathbf {x}_{i}^{*(t)},\mathbf {\sigma }_{i}^{(t)})\in \xi _{t}^{{\text{EP}}}\) where \(\mathbf {x}_{i}^{*(t)}\) is an optimal solution. Given steps 5 and 6 of EP, \(\mathbf {x}_{i}^{*(t)}\) will have the most “wins” as well as the highest fitness, so \(\mathbf {x}_{i}^{*(t)}\) will be selected for the next iteration with probability one if there are less than k optimal solutions in the tournament. \(\mathbf {x}_{i}^{*(t)}\) might be lost, but other optimal solutions will be selected if there are more than k optimal solutions in the parent and offspring. Thus, \(P\{\xi _{t+1}^{{\text{EP}}}\notin \varOmega _{{\text{EP}}}^{*}|\xi _{t}^{{\text{EP}}} \in \varOmega _{{\text{EP}}}^{*}\}=0\), and \(\{\xi _{t}^{{\text{EP}}}\}_{t=0}^{+\infty }\) is an absorbing Markov process to \(\varOmega _{{\text{EP}}}^{*}\).

Proof of Theorem 1

Observe that \(\lambda _{t}^{{\text{EP}}}-\lambda _{t-1}^{{\text{EP}}}=P\{\mu _{{\text{EP}}}\le t\}-P\{\mu _{{\text{EP}}}\le t-1\}=P\{\mu _{{\text{EP}}}=t\}\). Therefore, we have

$$\begin{aligned} {E\mu _{{\text{EP}}}} & {\,=\,\sum \limits _{t=1}^{+\infty }t\cdot (\lambda _{t}^{{\text{EP}}}-\lambda _{t-1}^{{\text{EP}}}) =\lim \limits _{N\rightarrow +\infty }\sum \limits _{t=1}^{N}t\cdot (\lambda _{t}^{{\text{EP}}}-\lambda _{t-1}^{{\text{EP}}})}\\&{\,=\,\lim \limits _{N\rightarrow +\infty }\sum \limits _{i=1}^{N}(\lambda _{N}^{{\text{EP}}}-\lambda _{i-1}^{{\text{EP}}}) {\,=\,\sum \limits _{i=1}^{+\infty }(1-\lambda _{i-1}^{{\text{EP}}})}}\\&{=\sum \limits _{i=0}^{+\infty }(1-\lambda _{i}^{{\text{EP}}})} \end{aligned}$$

Proof of Corollary 1

Let \(p_{i}=P\{\xi _{i}^{{\text{EP}}}\in \varOmega _{{\text{EP}}}^{*}|\xi _{i-1}^{{\text{EP}}}\notin \varOmega _{{\text{EP}}}^{*}\}\). Based on the total probability equation, \(\lambda _{t}^{{\text{EP}}}=(1-\lambda _{t-1}^{{\text{EP}}})p_{t}+\lambda _{t-1}^{{\text{EP}}}(1-p_{t})\). Substituting it into Theorem 1, we have \(E\mu _{{\text{EP}}}=\sum \nolimits _{t=0}^{+\infty }[(1-\lambda _{0}^{{\text{EP}}})\prod _{i=1}^{t}(1-p_{i})]\).

Proof of Corollary 2

According to Corollary 1, \(E\mu _{{\text{EP}}}\ge \sum _{t=0}^{+\infty }[(1-\lambda _{0}^{{\text{EP}}}) \prod _{i=1}^{t}(1-\beta _{i})]\). Similarly, we have \(E\mu _{{\text{EP}}}\le \sum _{t=0}^{+\infty }[(1-\lambda _{0}^{{\text{EP}}}) \prod _{i=1}^{t}(1-\alpha _{i})]\). Thus, \(\beta ^{-1}(1-\lambda _{0}^{{\text{EP}}})\le E\mu _{{\text{EP}}} \le \alpha ^{-1}(1-\lambda _{0}^{{\text{EP}}})\) when \(\alpha _{t}=\alpha\) and \(\beta _{t}=\beta\).

Proof of Theorem 2

For fixed individual \((\mathbf {x},{\bar{\varvec{\sigma }}})\), \({\bar{\mathbf{x}}}=\mathbf {x}+\mathbf {u}\,\bigotimes\,{\bar{\varvec{\sigma }}}\), where \(\mathbf {\bar{\sigma }}=(\bar{\sigma }_1,\bar{\sigma }_2,\ldots ,\bar{\sigma }_n)\) is a n-dimension variation variable and the stochastic disturbance \(\mathbf {u}=(u_1,u_2,\ldots ,u_n)\) follows n-dimensional standard Gaussian distribution. Let \(\mathbf {z}=(z_1,z_2,\ldots ,z_n)\), that is, \(\mathbf {z}=\mathbf {u}\,\bigotimes\,{\bar{\varvec{\sigma }}}=(u_1\bar{\sigma }_1,u_2\bar{\sigma }_2,\ldots ,u_n\bar{\sigma }_n)\). According to Expressions (1) and (2), \(z_{j}=\mu _{j}\bar{\sigma }_{j}=\mu _{j}\sigma\). Then, we have \(z_{j}\sim N(0,\bar{\sigma }_{j}^{2})\) since \(u_{j}\sim N(0,1)\), where \(j=1,\ldots ,n\). Therefore, \({\bar{\mathbf{x}}}=\mathbf {x}+\mathbf {u}\,\bigotimes\,{\bar{\varvec{\sigma }}}=\mathbf {x}+\mathbf {z}.\)

Given \(\mathbf {S}=\prod \nolimits _{j=1}^{n}[-b_{j},b_{j}], \mathbf {S}^{*}(\varepsilon )\subseteq \mathbf {S}.\) Let \(\tilde{\mathbf {S}}=\{\mathbf {z}|\mathbf {z}={\bar{\mathbf{x}}}-\mathbf {x},{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon ),\mathbf {x}\in \mathbf {S}\}\). According to the property of measure, \(m\big (\mathbf {S}^{*}(\varepsilon )\big )=m(\tilde{\mathbf {S}})\). \(P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon )\}=P\{\mathbf {z}\in \tilde{\mathbf {S}}\}=\int \cdots \int _{\tilde{\mathbf {S}}}\prod \nolimits _{j=1}^{n}\frac{1}{\sqrt{2\pi \bar{\sigma }_{j}}}\exp \{-\frac{z_{j}^{2}}{2\bar{\sigma }_{j}^{2}}\}dz_{1}\ldots dz_{n}.\)

Note that \({\bar{\mathbf{x}}},\mathbf {x}\in \mathbf {S}\) and \(\mathbf {z}={\bar{\mathbf{x}}}-\mathbf {x}\), so we have \(|z_{j}|=|\bar{x}_{j}-x_{j}|\le 2b_{j}=2b\) (\(j=1,\ldots ,n\)), which leads to the following inequality:

$$\begin{aligned}&\int \cdots \int _{\tilde{\mathbf {S}}}\prod \limits _{j=1}^{n}\frac{1}{\sqrt{2\pi \bar{\sigma }_{j}}}\exp \left\{-\frac{z_{j}^{2}}{2\bar{\sigma }_{j}^{2}}\right\}dz_{1}\ldots dz_{n}\\&\ge \int \cdots \int _{\tilde{\mathbf {S}}}\prod \limits _{j=1}^{n}\frac{1}{\sqrt{2\pi \bar{\sigma }_{j}}}\exp \left\{-\frac{(2b_{j})^{2}}{2\bar{\sigma }_{j}^{2}}\right\}dz_{1}\ldots dz_{n}\\&=m(\tilde{\mathbf {S}})\prod \limits _{j=1}^{n}\frac{1}{\sqrt{2\pi }\sigma }\exp \left\{-\frac{2b_{j}^{2}}{\sigma ^{2}}\right\}\\&=m(\tilde{\mathbf {S}})\left(\frac{1}{\sqrt{2\pi }}\right)^{n} \left(\prod \limits _{j=1}^{n}\frac{1}{\sigma }\right)\exp \left\{-\sum \limits _{j=1}^{n}\frac{2b^{2}}{\sigma ^{2}}\right\} \end{aligned}$$

That is, we obtain a lower bound of \(P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}\}\) as follows:

$$\begin{aligned} P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon )\}\ge m(\tilde{\mathbf {S}})\left(\frac{1}{\sqrt{2\pi }}\right)^{n}\left(\prod \limits _{j=1}^{n}\frac{1}{\sigma }\right)\exp \left\{-\sum \limits _{j=1}^{n}\frac{2b^{2}}{\sigma ^{2}}\right\}. \end{aligned}$$

Noting that \(m\big (\mathbf {S}^{*}(\varepsilon )\big )=m(\tilde{\mathbf {S}})\), we also have \(P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon )\}\ge m\big (\mathbf {S}^{*}(\varepsilon )\big )(\frac{1}{\sqrt{2\pi }})^{n} (\prod \nolimits _{j=1}^{n}\frac{1}{\sigma })\exp \{-\sum \nolimits _{j=1}^{n}\frac{2b^{2}}{\sigma ^{2}}\}\) (2) Let \(f({\bar{\varvec{\sigma }}})=\log \big (\prod \nolimits _{j=1}^{n}\frac{1}{\sigma }\exp \{-\sum \nolimits _{j=1}^{n}\frac{2b^{2}}{\sigma ^{2}}\}\big ) =-\sum \nolimits _{j=1}^{n}\big (\log \sigma +a_{j}\frac{1}{\sigma ^{2}}\big )\)where \(a_{j}=2b^{2}\). \(\max f({\bar{\varvec{\sigma }}})\Leftrightarrow \min \sum \nolimits _{j=1}^{n}\big (\log \sigma +a_{j}\frac{1}{\sigma ^{2}}\big )\), \(\frac{d\big (\log \sigma +a_{j}\frac{1}{\sigma ^{2}}\big )}{d\sigma }=0\Rightarrow \frac{1}{\sigma }-2a_{j}\frac{1}{\sigma ^{3}}=0\Rightarrow \sigma =\sqrt{2a_{j}}.\)

Noticing that \(a_{j}=2b_{j}^{2}=2b^{2}\), we have \(\sigma =2b\), which implies the lower bound of \(P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon )\}\) can be improved into

$$\begin{aligned}&m\big (\mathbf {S}^{*}(\varepsilon )\big )\left(\frac{1}{\sqrt{2\pi }}\right)^{n}\prod \limits _{j=1}^{n}\frac{1}{2b}\exp \left\{-\sum \limits _{j=1}^{n}\frac{2b^{2}}{(2b)^{2}}\right\}\\&=m\big (\mathbf {S}^{*}(\varepsilon )\big )\left(\frac{1}{\sqrt{2\pi }}\right)^{n} e^{-\frac{n}{2}}\prod \limits _{j=1}^{n}\frac{1}{2b}\\&=m\big (\mathbf {S}^{*}(\varepsilon )\big )\left(\frac{1}{\sqrt{2\pi }}\right)^{n} e^{-\frac{n}{2}}(2b)^{-n}\\&=m\big (\mathbf {S}^{*}(\varepsilon )\big )\left(4\sqrt{e}\pi b\right)^{-n} \end{aligned}$$

Therefore, \(P\{{\bar{\mathbf{x}}}_{i}^{t}\in \mathbf {S}^{*}(\varepsilon )\}\ge m\big (\mathbf {S}^{*}(\varepsilon )\big )(4\sqrt{e}\pi b)^{-n}\).

(3) By the property of \(\varOmega _{{\text{EP}}}^{*}\) and \(m\big (\mathbf {S}^{*}(\varepsilon )\big )\) in Definition 4, \(\forall \varepsilon >0\) and \(t=1,2,\ldots\), \(P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C} \notin \varOmega _{{\text{EP}}}^{*}\}=1-\prod _{i=1}^{k}\big (1-P\{{\bar{\mathbf{x}}}_{i}\in \mathbf {S}^{*}(\varepsilon )\}\big )\)

Thus, \(P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\}\ge 1-\big (1-m(\mathbf {S}^{*})(4\sqrt{e}\pi b)^{-n}\big )^{k}\;\text {for}\;\forall \varepsilon >0\).

Proof of Corollary 3

1. Based on the total probability equation, we have

$$\begin{aligned} \lambda _{t}^{C}=(1-\lambda _{t-1}^{C})P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\}\\ +\lambda _{t-1}^{C}P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\in \varOmega _{{\text{EP}}}^{*}\} \qquad \quad \end{aligned}$$

Because \(\{\xi _{t}^{C}\}_{t=0}^{+\infty }\) can be considered as an absorbing Markov process following Lemma 2, \(P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\in \varOmega _{{\text{EP}}}^{*}\}=1\).\(\lambda _{t}^{C}=(1-\lambda _{t-1}^{C})P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\}+\lambda _{t-1}^{C}\), we have \(1-\lambda _{t}^{CEP}=(1-\lambda _{t-1}^{C})(1-P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\})\). According to Theorem 2,

$$\begin{aligned} P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\} \qquad \quad \\ \ge 1-\Big (1-m\big (\mathbf {S}^{*}(\varepsilon )\big )(\frac{1}{4\sqrt{e}\pi b})^{n}\Big )^{k}. \end{aligned}$$

For \(m\big (\mathbf {S}^{*}(\varepsilon )\big )(\frac{1}{4\sqrt{e}\pi b} )^{n}>0\), \(d=1-\Big (1-m\big (\mathbf {S}^{*}(\varepsilon )\big )(\frac{1}{4\sqrt{e}\pi b})^{n}\Big )^{k}>0\) and \(\lim \nolimits _{t\rightarrow +\infty }(1-d)^{t}=0\). Thus, \(1-\lambda _{t}^{C}\le (1-d)(1-\lambda _{t-1}^{C})=(1-\lambda _{0}^{C})(1-d)^{t}\), so \(\lim \nolimits _{t\rightarrow +\infty }\lambda _{t}^{C}\ge 1-(1-\lambda _{0}^{C})\lim \nolimits _{t\rightarrow +\infty }(1-d)^{t}=1\). Since \(\lambda _{t}^{C}\le 1\), \(\lim \nolimits _{t\rightarrow +\infty }\lambda _{t}^{C}=1\).

2. Given \(\alpha =1-\Big (1-m\big (\mathbf {S}^{*}(\varepsilon )\big )(\frac{1}{4\sqrt{e}\pi b})^{n}\Big )^{k}>0\), we know that \(P\{\xi _{t}^{C}\in \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{C}\notin \varOmega _{{\text{EP}}}^{*}\}\ge \alpha\) based on Theorem 2. According to Corollary 3, \(\forall \varepsilon >0\), \(E\mu _{C}\le (1-\lambda _{0}^{C})\Big (1-\big (1-m(\mathbf {S}^{*}(\varepsilon ))(\frac{1}{4\sqrt{e}\pi b})^{n}\big )^{k}\Big )^{-1}\).

Proof of Theorem 3

1. For fixed individual \((\mathbf {x},{\bar{\varvec{\sigma }}})\), \({\bar{\mathbf{x}}}=\mathbf {x}+\mathbf {\delta }\,\bigotimes\, {\bar{\varvec{\sigma }}}\), where the stochastic disturbance \(\mathbf {\delta }\) follows n-dimensional standard Cauchy distribution. Let \(\mathbf {z}=\mathbf {\delta }\,\bigotimes\, {\bar{\varvec{\sigma }}}\), that is, \(z_{j}=\sigma \delta _{j}\) (\(j=1,\ldots ,n\)). Then, we have \({\bar{\mathbf{x}}}=\mathbf {x}+\mathbf {z}\) and \(z_{j}\sim \frac{1}{\sigma }C_{\phi =1}(\frac{y}{\sigma })\) since \(\delta _{j}\sim C_{\phi =1}(y)\) (\(j=1,\ldots ,n\)).

In a manner similar to the Proof of Theorem 2, we derive

$$\begin{aligned}&P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}(\varepsilon )\}=P\{\mathbf {z}\in \tilde{\mathbf {S}}\}\\&=\int \cdots \int _{\tilde{\mathbf {S}}}\left(\frac{1}{\sigma \pi }\right)^{n}\frac{1}{\prod \nolimits _{j=1}^{n}\left(1+\frac{z_{j}^{2}}{\sigma ^{2}}\right)}dz_{1}\ldots dz_{n}\\&=\int \cdots \int _{\tilde{\mathbf {S}}}\left(\frac{1}{\sigma \pi }\right)^{n}\frac{1}{\prod \nolimits _{j=1}^{n}\left(1+\frac{z_{j}^{2}}{\sigma ^{2}}\right)}dz_{1}\ldots dz_{n}\\&\ge \int \cdots \int _{\tilde{\mathbf {S}}}\left(\frac{1}{\sigma \pi }\right)^{n}\frac{1}{\prod \nolimits _{j=1}^{n}\left(1+\frac{4b^{2}}{\sigma ^{2}}\right)}dz_{1}\ldots dz_{n}\\&=\left(\frac{1}{\sigma \pi }\right)^{n}\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{\left(1+\frac{4b^{2}}{\sigma ^{2}}\right)^{n}}=\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(\pi )^{n}}\left(\sigma +\frac{4b^{2}}{\sigma }\right)^{-n} \end{aligned}$$

(Note that \(|z_{j}|=|\bar{x}_{j}-x_{j}|\le 2b\) (\(j=1,\ldots ,n\)).)

2. Letting \(f({\bar{\varvec{\sigma }}})=-\log (\sigma +\frac{4b^{2}}{\sigma })\) , we have

$$\begin{aligned}&\max f({\bar{\varvec{\sigma }}})\Leftrightarrow \min \big (\sigma +\frac{4b^{2}}{\sigma }\big ),\\&\frac{d\big (\sigma +\frac{4b^{2}}{\sigma }\big )}{d\sigma }=0\Rightarrow 1-\frac{4b^{2}}{\sigma ^{2}}=0\Rightarrow \sigma =2b \end{aligned}$$

It can be improved into \(P\{{\bar{\mathbf{x}}}\in \mathbf {S}^{*}\}\ge \frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}\) when \(\sigma =2b\).

3. Hence, \(\forall \varepsilon >0\) and \(t=1,2,\ldots\), if \(\sigma =2b\), \(P\{\xi _{t}^{F}\notin \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{F}\in \varOmega _{{\text{EP}}}^{*}\}\ge 1-\big (1-\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}\big )^{k}\).

Proof of Corollary 4

1. According to Theorem 3, \(P\{\xi _{t}^{F}\notin \varOmega _{{\text{EP}}}^{*}|\xi _{t-1}^{F}\in \varOmega _{{\text{EP}}}^{*}\}\ge 1-\big (1-\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}\big )^{k}\). \(0<\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}<1\) due to the second assumption in Sect. 2.2. Let \(\theta =1-\Big (1-\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}\Big )^{k}\) for \(t=1,2,\ldots\). Then \(0<\theta <1\) and \(\lim \nolimits _{t\rightarrow +\infty }(1-\theta )^{t}=0\).

Thus, \(\lim \nolimits _{t\rightarrow +\infty }\lambda _{t}^{F}\ge 1- (1-\lambda _{0}^{F})\lim \nolimits _{t\rightarrow +\infty }(1-\theta )^{t}=1\). \(\lim \nolimits _{t\rightarrow +\infty }\lambda _{t}^{F}=1\) since \(\lambda _{t}^{F}\le 1\).

2. Since \(\lim \nolimits _{t\rightarrow +\infty }\lambda _{t}^{F}=1\), following Corollary 2 and Theorem 4, we find that

$$\begin{aligned} E\mu _{F}\le \frac{(1-\lambda _{0}^{F})}{\Big (1-\big (1-\frac{m\big (\mathbf {S}^{*}(\varepsilon )\big )}{(4b\pi )^{n}}\big )^{k}\Big )}, \quad \forall \varepsilon >0. \end{aligned}$$

Proof of Theorem 4

1. According to Eq. (9), for the only individual \({{{\varvec{x}}}}\) per iteration, \(\bar{{{\varvec{x}}}} = {{\varvec{x}}} + {{\varvec{u}}}\) , where the stochastic disturbance \({{\varvec{u}}}\) follows n-dimensional standard Gauss distribution. Then, we have \({{\varvec{u}}}=\bar{{{\varvec{x}}}} - {{\varvec{x}}}\) and \({u_j}\sim N(0,1)\) (\(j=1, 2, \ldots , n\)). Following the Proof of Theorem 2,

$$\begin{aligned}&P\{ \bar{x} \in {{\mathbf{S}}^{\mathbf{*}}}(\varepsilon )\} = P\{ {\mathbf{u}} \in {{\tilde{\mathbf{S}}}}\}\\&= \int \cdots \int _{\tilde{S}} {\prod \limits _{j = 1}^n {\frac{1}{{\sqrt{2\pi } }}} \exp \left\{ - \frac{{u_j^2}}{2}\right\} d} {u_1} \ldots d{u_n}\\&\ge \int \cdots \int _{\tilde{S}} {\prod \limits _{j = 1}^n {\frac{1}{{\sqrt{2\pi } }}} \exp \left\{ - \frac{1}{2}\right\} d} {u_1} \ldots d{u_n}\\&= \int \cdots \int _{\tilde{S}} {{{\left(\frac{1}{{\sqrt{2\pi e} }}\right)}^n}d} {u_1} \ldots d{u_n}\\&= m({{\mathbf{S}}^{\mathbf{*}}}(\varepsilon )){\left(\frac{1}{{\sqrt{2\pi e} }}\right)^n}\\&= {\left(\frac{\varepsilon }{{\sqrt{2\pi e} }}\right)^n} \end{aligned}$$

Based on Corollary 3, \(E{\mu _1} \le {(\frac{{\sqrt{2\pi e} }}{\varepsilon })^n}\)

2. According to Eq. (10), \(\bar{{{\varvec{x}}}} = {{\varvec{x}}} + \varvec{\delta }\) where the stochastic disturbance \(\varvec{\delta }\) follows n-dimensional standard Cauchy distribution. Then, we have \(\varvec{\delta }=\bar{{{\varvec{x}}}} - {{\varvec{x}}}\) and \({\delta _j}\sim {C_{\phi = 1}}(y)\) (\(j=1, 2, \ldots , n\)).

Following the Proof of Theorem 3,

$$\begin{aligned}P\{ \bar{x} \in {{\mathbf{S}}^{\mathbf{*}}}(\varepsilon )\} & = P\{ {\varvec{\delta }} \in {{\tilde{\mathbf{S}}}}\}\\&= \int \cdots \int _{\tilde{S}} {\prod \nolimits _{j = 1}^n {{C_{\phi = 1}}({\delta _j})} d} {\delta _1} \ldots d{\delta _n}\\&= \int \cdots \int _{\tilde{S}} {{{\left(\frac{1}{\pi }\right)}^n}\frac{1}{{\prod \nolimits _{j = 1}^n {(1 + \delta _j^2)} }}d} {\delta _1} \ldots d{\delta _n}\\&\ge \int \cdots \int _{\tilde{S}} {{{\left(\frac{1}{\pi }\right)}^n}\frac{1}{{\prod \limits _{j = 1}^n {(1 + 1)} }}d} {\delta _1} \ldots d{\delta _n}\\&= \int \cdots \int _{\tilde{S}} {{{\left(\frac{1}{{2\pi }}\right)}^n}d} {\delta _1} \ldots d{\delta _n}\\&= {\left(\frac{\varepsilon }{{2\pi }}\right)^n} \end{aligned}$$

Hence, \(E{\mu _2} \le {(\frac{{2\pi }}{\varepsilon })^n}\) owning to Corollary 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, H., Lin, Z. et al. Running-time analysis of evolutionary programming based on Lebesgue measure of searching space. Neural Comput & Applic 30, 617–626 (2018). https://doi.org/10.1007/s00521-016-2651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2651-7

Keywords