Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Probabilistic wind power forecasting using a novel hybrid intelligent method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

As a consequence of increasing wind power penetration level, it will be a big challenge to control and operate the power system because of the inherent uncertainty of the wind energy. One of the ways to deal with the wind power variability is to predict it accurately and reliably. The traditional point forecasting-based technique cannot notably solve the uncertainty in power system operation. In order to compute the probabilistic forecasting, which yields information on the uncertainty of wind power, a novel hybrid intelligent method that incorporates the wavelet transform, neural network (NN), and improved krill herd optimization algorithm (IKHOA), is used in this paper. Also, the extreme learning machine is exerted to train NN and calculates point forecasts, and IKHOA is applied to forecast the noise variance. The robust method called bootstrap is regarded to create prediction intervals and calculate the model uncertainty. The efficiency of proposed forecasting engine is evaluated by usage of wind power data from the Alberta, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(b_{i} ,b^{^\circ }\) :

Biases of ELM and approximated models

B PI :

Number of the bootstrap duplicates

ϑ (α) :

Indicator of PICP

LS :

Cost function of the gradient-based learning algorithm

\(DS_{{s^{2} }}\) :

Generated dataset for training the models of noise variance estimation

f D ():

Output function

φ():

Activation function of neural network

H :

Hidden-layer output matrix

\(H^{\dag }\) :

Moore–Penrose generalized inverse of the hidden-layer output matrix

D :

Number of hidden nodes

\({\mathcal{L}}_{t}^{\alpha }\) :

Lower bound of PI

\({\mathcal{U}}_{t}^{\alpha }\) :

Upper bound of PI

m :

Dimension of the output vector

n :

Dimension of the input vector

N :

Number of training samples

\(N_{{\mathcal{T}}}\) :

Number of test samples

IS α t (x i ):

Interval score

\(T, t\) :

Matrix of targets, targets/length of time series, time period

v :

Input weights of ELM

v :

Approximated input weights

z :

Input variables

L :

True regression

\(\hat{L}\) :

Trained neural network

1−α/2 :

Critical value of the normal distribution

(1 − α):

Confidence level

γ :

Approximated output weights

γ :

Output weights of ELM

\(\hat{\sigma }_{t}^{2}\) :

Variance of the total forecasting error

\(\hat{\sigma }_{L}^{2}\) :

Variance of the model uncertainty

\(\hat{\sigma }_{\varepsilon }^{2}\) :

Variance of the data noise

ρ α t :

Width of PI

\({\text{M}}\) :

Selected wavelet function

w t :

The value of the wind at hour t

DP M rc :

Decomposition coefficient at resolution level r and position c

A r :

Approximation series

D r :

Detail series

\({\mathcal{M}}\) :

Mother wavelet functions

\({\mathcal{F}}\) :

Father wavelet functions

\({\mathcal{X}},{\mathcal{X}}^{best}\) :

Position of ith krill individual, position of best krill individual

\(A_{i} ,A_{w} , A_{b}\) :

Fitness value of ith, worth, best individual

A b i :

Best fitness value of the previously visited position associated with ith krill individual

\({\mathcal{X}}_{i}^{b}\) :

Previous best position of the ith krill individual

ac s :

Accumulation factor of sth strategy

C d :

Cartesian distance to best krill individual

iter :

Iteration counter

iter max :

Maximum number of iterations

\({\mathcal{X}}^{M}\) :

New improved individual based on the mutation operator

\({\mathcal{X}}_{{TS_{i} }}\) :

ith test individual produced in each strategy

N n :

Number of neighbors

N pop :

Krill size

N d :

Number of the decision variables

N im :

Number of krill individuals which choose a strategy

Pr s :

Normalized probability associated with sth strategy

\(d_{z}\) :

Diagnosing zone

UP j :

Upper restriction of jth decision variable

LOW j :

Lower restriction of jth decision variable

\({\mathcal{V}}_{I,i}^{g}\) :

Induced velocity in gth generation

\({\mathcal{V}}_{F,i}^{g}\) :

Foraging velocity in gth generation

\({\mathcal{V}}_{D,i}^{g}\) :

Diffusion velocity in gth generation

\({\mathcal{V}}_{I,i}^{max}\) :

Maximum induced velocity

\({\mathcal{V}}_{i}^{g}\) :

Speed of ith krill individual

i :

Random variable

\(\partial_{I} , \partial_{F}\) :

Inertia weight of induction velocity, inertia weight of foraging velocity

\(\text{g}_{m}\) :

Mutation level

g :

Generation index

References

  1. Bhaskar K, Singh S (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:306–315

    Article  Google Scholar 

  2. Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E (2008) A review on the young history of the wind power short-term prediction. Renew Sustain Energy Rev 12:1725–1744

    Article  Google Scholar 

  3. Lei M, Shiyan L, Chuanwen J, Hongling L, Yan Z (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13:915–920

    Article  Google Scholar 

  4. Potter CW, Negnevitsky M (2006) Very short-term wind forecasting for Tasmanian power generation. IEEE Trans Power Syst 21:965–972

    Article  Google Scholar 

  5. Yang M, Fan S, Lee W-J (2013) Probabilistic short-term wind power forecast using componential sparse Bayesian learning. IEEE Trans Ind Appl 49:2783–2792

    Article  Google Scholar 

  6. Dowell J, Pinson P (2016) Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans Smart Grid 7(2):763–770

    Google Scholar 

  7. Yan J, Li K, Bai E-W, Deng J, Foley AM (2016) Hybrid probabilistic wind power forecasting using temporally local Gaussian process. IEEE Trans Sustain Energy 7:87–95

    Article  Google Scholar 

  8. Yang M, Lin Y, Han X (2016) Probabilistic wind generation forecast based on sparse Bayesian classification and Dempster-Shafer theory. IEEE Trans Ind Appl 52:1998–2005

    Article  Google Scholar 

  9. Haque AU, Nehrir MH, Mandal P (2014) A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29:1663–1672

    Article  Google Scholar 

  10. Kavousi-Fard A, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31:18–26

    Article  Google Scholar 

  11. Bessa RJ, Miranda V, Botterud A, Wang J, Constantinescu M (2012) Time adaptive conditional kernel density estimation for wind power forecasting. IEEE Trans Sustain Energy 3:660–669

    Article  Google Scholar 

  12. Bessa RJ, Miranda V, Botterud A, Zhou Z, Wang J (2012) Time-adaptive quantile-copula for wind power probabilistic forecasting. Renew Energy 40:29–39

    Article  Google Scholar 

  13. Zhang Y, Wang J (2016) K-nearest neighbors and kernel density estimator for GEFCom2014 probabilistic wind power forecasting. Int J Forecast 32(3):1074–1080

    Article  Google Scholar 

  14. Pinson P, Kariniotakis G (2010) Conditional prediction intervals of wind power generation. IEEE Trans Power Syst 25:1845–1856

    Article  Google Scholar 

  15. Quan H, Srinivasan D, Khosravi A (2014) Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans Neural Netw Learn Syst 25:303–315

    Article  Google Scholar 

  16. da Silva APA, Moulin LS (2000) Confidence intervals for neural network based short-term load forecasting. IEEE Trans Power Syst 15:1191–1196

    Article  Google Scholar 

  17. Bhaskar K, Singh S (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:306–315

    Article  Google Scholar 

  18. Wan C, Xu Z, Pinson P, Dong ZY, Wong KP (2014) Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans Power Syst 29:1033–1044

    Article  Google Scholar 

  19. Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, pp 985–990

  20. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  21. Shrivastava NA, Panigrahi BK (2014) A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int J Electr Power Energy Syst 55:41–50

    Article  Google Scholar 

  22. Conejo AJ, Plazas M, Espinola R, Molina AB (2005) Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans Power Syst 20:1035–1042

    Article  Google Scholar 

  23. Zhao JH, Dong ZY, Xu Z, Wong KP (2008) A statistical approach for interval forecasting of the electricity price. IEEE Trans Power Syst 23:267–276

    Article  Google Scholar 

  24. Winkler RL (1972) A decision-theoretic approach to interval estimation. J Am Stat Assoc 67:187–191

    Article  MathSciNet  MATH  Google Scholar 

  25. Efron B, Tibshirani R (1993) An introduction to the bootstrap. CRC, Boca Raton

    Book  MATH  Google Scholar 

  26. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  27. Sideratos G, Hatziargyriou N (2007) Using radial basis neural networks to estimate wind power production. In Power Engineering Society General Meeting, 2007. IEEE, pp 1–7

  28. Alberta Electric System Operator. https://www.aeso.ca

  29. Kwiatkowski D, Phillips PC, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J Econom 54:159–178

    Article  MATH  Google Scholar 

  30. Rafiei M, Niknam T, Khooban MH (2016) Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing. Neural Comput Appl 16:1–3

    Google Scholar 

  31. Rafiei M, Niknam T, Khooban MH (2016) A novel intelligent strategy for probabilistic electricity price forecasting: wavelet neural network based modified dolphin optimization algorithm. J Intell Fuzzy Syst 31(1):301–312

    Article  Google Scholar 

  32. Rafiei M, Niknam T, Khooban MH (2016) Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans Ind Inform PP(99):1. doi:10.1109/TII.2016.2585378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Hassan Khooban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari-Igder, M., Niknam, T. & Khooban, MH. Probabilistic wind power forecasting using a novel hybrid intelligent method. Neural Comput & Applic 30, 473–485 (2018). https://doi.org/10.1007/s00521-016-2703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2703-z

Keywords