Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the performance of the well-known genetic algorithms and tabu search heuristics with the financial problem of the partial tracking of a stock market index. Although the weights of each stock in a tracking portfolio can be efficiently determined by means of quadratic programming, identifying the appropriate stocks to include in the portfolio is an NP-hard problem which can only be addressed by heuristics. Seven real-world indexes were used to compare the above techniques, and results were obtained for different tracking portfolio cardinalities. The results show that tabu search performs more efficiently with both real and artificial indexes. In general, the tracking portfolios obtained performed well in both in-sample and out-of-sample periods, so that these heuristics can be considered as appropriate solutions to the problem of tracking an index by means of a small subset of stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aguilar-Rivera R, Valenzuela-Rendón M, Rodríguez-Ortiz JJ (2015) Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst Appl 42:7684–7697

    Article  Google Scholar 

  2. Andriosopoulos K, Doumpos M, Papapostolou NC, Pouliasis PK (2013) Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms. Transp Res Part E Logist Transp Rev 52:16–34

    Article  Google Scholar 

  3. Aouni B, Colapinto C, La Torre D (2013) A cardinality constrained stochastic goal programming model with satisfaction functions for venture capital investment decision making. Ann Oper Res 205:77–88

    Article  MathSciNet  Google Scholar 

  4. Barak S, Dahooie JH, Tichý T (2015) Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese candlestick. Expert Syst Appl 42:9221–9235

    Article  Google Scholar 

  5. Beasley JE (1990) OR-Library: distributing test problems by electronic mail. J Oper Res Soc 41:1069–1072

    Article  Google Scholar 

  6. Beasley JE, Meade N, Chang TJ (2003) An evolutionary heuristic for the index tracking problem. Eur J Oper Res 148:621–643

    Article  MathSciNet  Google Scholar 

  7. Berutich JM, López F, Luna F, Quintana D (2016) Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Syst Appl 46:307–315

    Article  Google Scholar 

  8. Canakgoz NA, Beasley JE (2008) Mixed-integer programming approaches for index tracking and enhanced indexation. Eur J Oper Res 196:384–399

    Article  MathSciNet  Google Scholar 

  9. Cesarone F, Scozzari A, Tardella F (2013) A new method for mean-variance portfolio optimization with cardinality constraints. Ann Oper Res 205:213–234

    Article  MathSciNet  Google Scholar 

  10. Chang TJ, Meade N, Beasley JE, Sharaiha YM (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res 27:1271–1302

    Article  Google Scholar 

  11. Chavez-Bedoya L, Birge JR (2014) Index tracking and enhanced indexation using a parametric approach. J Econ Financ Adm Sci 19:19–44

    Google Scholar 

  12. Chen C, Kwon RH (2012) Robust portfolio selection for index tracking. Comput Oper Res 39:829–837

    Article  MathSciNet  Google Scholar 

  13. Chiam SC, Tan KC, Al Mamun A (2013) Dynamic index tracking via multi-objective evolutionary algorithm. Appl Soft Comput J 13:3392–3408

    Article  Google Scholar 

  14. Connor G, Leland H (1995) Cash management for index tracking. Financ Anal J 51:75–80

    Article  Google Scholar 

  15. Corielli F, Marcellino M (2006) Factor based index tracking. J Bank Financ 30:2215–2233

    Article  Google Scholar 

  16. Dunis CL, Rosillo R, de la Fuente D, Pino R (2013) Forecasting IBEX-35 moves using support vector machines. Neural Comput Appl 23:229–236

    Article  Google Scholar 

  17. Fama EF (1970) efficient capital markets: a review of theory and empirical work. J Financ 25:383–417

    Article  Google Scholar 

  18. Filippi C, Guastaroba G, Speranza MG (2016) A heuristic framework for the bi-objective enhanced index tracking problem. Omega 65:122–137

    Article  Google Scholar 

  19. Franks EC (1992) Targeting excess-of-benchmark returns. J Portf Manag 18:6–12

    Article  Google Scholar 

  20. Frino A, Gallagher DR, Oetomo TN (2005) The index tracking strategies of passive and enhanced index equity funds. Aust J Manag 30:23–55

    Article  Google Scholar 

  21. García F, Guijarro F, Moya I (2011) The curvature of the tracking frontier: a new criterion for the partial index tracking problem. Math Comput Model 54:1781–1784

    Article  MathSciNet  Google Scholar 

  22. Glover F (1986) Future paths for integer programming an links to artificial intelligence. Comput Oper Res 13:533–549

    Article  MathSciNet  Google Scholar 

  23. Guastaroba G, Speranza MG (2012) Kernel search: an application to the index tracking problem. Eur J Oper Res 217:54–68

    Article  MathSciNet  Google Scholar 

  24. Holland JH (1975) Adaptation in natural and artificial systems. An introductory analysis with applications to biology, control and artificial intelligence. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  25. Hsu C (2013) A hybrid procedure with feature selection for resolving stock/futures price forecasting problems. Neural Comput Appl 22:651–671

    Article  Google Scholar 

  26. Li Q, Sun L, Bao L (2011) Enhanced index tracking based on multi-objective immune algorithm. Expert Syst Appl 38:6101–6106

    Article  Google Scholar 

  27. Li X, Xie H, Wang R, Cai Y, Cao J, Wang F, Min H, Deng X (2014) Empirical analysis: stock market prediction via extreme learning machine. Neural Comput Appl 27:67–78

    Article  Google Scholar 

  28. Lindemann A, Dunis CL, Lisboa P (2005) Level estimation, classification and probability distribution architectures for trading the EUR/USD exchange rate. Neural Comput Appl 14:256–271

    Article  Google Scholar 

  29. Lobo MS, Fazel M, Boyd S (2007) Portfolio optimization with linear and fixed transaction costs. Ann Oper Res 152:341–365

    Article  MathSciNet  Google Scholar 

  30. Lwin K, Qu R (2013) A hybrid algorithm for constrained portfolio selection problems. Appl Intell 39:251–266

    Article  Google Scholar 

  31. Maringer D, Kellerer H (2003) Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectr 25:481–495

    Article  MathSciNet  Google Scholar 

  32. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  33. Mezali H, Beasley JE (2014) Index tracking with fixed and variable transaction costs. Optim Lett 8:61–80

    Article  MathSciNet  Google Scholar 

  34. Ni H, Wang Y (2013) Stock index tracking by Pareto efficient genetic algorithm. Appl Soft Comput J 13:4519–4535

    Article  Google Scholar 

  35. Roll R (1992) A mean/variance analysis of tracking error. J Portf Manag 18:13–22

    Article  Google Scholar 

  36. Ruiz-Torrubiano R, Suárez A (2009) A hybrid optimization approach to index tracking. Ann Oper Res 166:57–71

    Article  MathSciNet  Google Scholar 

  37. Sant’Anna LR, Filomena RP, Guedes PC, Borenstein D (2016) Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming. Ann Oper Res. doi:10.1007/s10479-016-2111-x

    Article  MATH  Google Scholar 

  38. Shoven JB, Sialm C (2000) The Dow Jones industrial average: the impact of fixing its flaws. J Wealth Manag 3:9–18

    Article  Google Scholar 

  39. Streichert F, Ulmer H, Zell A (2004) Evolutionary algorithms and the cardinality constrained portfolio optimization problem. In: Proceedings of the operations research 2003. Springer, Berlin, pp 253–260

    Google Scholar 

  40. Thenmozhi M, Sarath Chand G (2016) Forecasting stock returns based on information transmission across global markets using support vector machines. Neural Comput Appl 27:805–824

    Article  Google Scholar 

  41. Wang M, Xu C, Xu F, Xue H (2012) A mixed 0–1 LP for index tracking problem with CVaR risk constraints. Ann Oper Res 196:591–609

    Article  MathSciNet  Google Scholar 

  42. Woodside-Oriakhi M, Lucas C, Beasley JE (2011) Heuristic algorithms for the cardinality constrained efficient frontier. Eur J Oper Res 213:538–550

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Guijarro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, F., Guijarro, F. & Oliver, J. Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Comput & Applic 30, 2625–2641 (2018). https://doi.org/10.1007/s00521-017-2882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2882-2

Keywords