Abstract
This paper presents a new methodology from the standpoint of energy propagation for real-time and nonlinear modelling of deformable objects. It formulates the deformation process of a soft object as a process of energy propagation, in which the mechanical load applied to the object to cause deformation is viewed as the equivalent potential energy based on the law of conservation of energy and is further propagated among masses of the object based on the nonlinear Poisson propagation. Poisson propagation of mechanical load in conjunction with non-rigid mechanics of motion is developed to govern the dynamics of soft object deformation. Further, these two governing processes are modelled with cellular neural networks to achieve real-time computational performance. A prototype simulation system with a haptic device is implemented for real-time simulation of deformable objects with haptic feedback. Simulations, experiments as well as comparisons demonstrate that the proposed methodology exhibits nonlinear force–displacement relationship, capable of modelling large-range deformation. It can also accommodate homogeneous, anisotropic and heterogeneous materials by simply changing the constitutive coefficient value of mass points.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cover SA, Ezquerra NF, O’Brien JF, Rowe R, Gadacz T, Palm E (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13(6):68–75. doi:10.1109/38.252559
CaniGascuel M, Desbrun M (1997) Animation of deformable models using implicit surfaces. IEEE Trans Vis Comput Graph 3(1):39–50. doi:10.1109/2945.582343
Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. ACM SIGGRAPH Comput Graph 21(4):205–214. doi:10.1145/37401.37427
Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410. doi:10.1016/j.media.2013.11.001
Frisken-Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the symposium on interactive 3D graphics, pp 149–154. doi:10.1145/253284.253324
Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7(4):246–252. doi:10.1080/21655979.2016.1197634
Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11(6):919–928. doi:10.1007/s11548-016-1373-8
Misra S, Ramesh KT, Okamura AM (2008) Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleoper Virtual Environ 17(5):463–491. doi:10.1162/pres.17.5.463
Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73. doi:10.1109/2945.764872
Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21(8–10):707–716. doi:10.1007/s00371-005-0310-6
Weber D, Mueller-Roemer J, Altenhofen C, Stork A, Fellner D (2015) Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput Graph 53:185–195. doi:10.1016/j.cag.2015.06.010
Yang C, Li S, Lan Y, Wang L, Hao A, Qin H (2016) Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput Aided Geom Des 43:53–67. doi:10.1016/j.cagd.2016.02.014
Huang J, Liu X, Bao H, Guo B, Shum H-Y (2006) An efficient large deformation method using domain decomposition. Comput Graph 30(6):927–935. doi:10.1016/j.cag.2006.08.014
Strbac V, Sloten JV, Famaey N (2015) Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA. Finite Elem Anal Des 105:79–89. doi:10.1016/j.final.2015.07.005
Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16(8):437–452. doi:10.1007/Pl00007215
Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36(5):356–365. doi:10.1016/j.compmedimag.2012.03.001
Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66. doi:10.1016/j.enganabound.2013.08.014
Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2016) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44(1):3–15. doi:10.1007/s10439-015-1469-2
Xu S, Liu X, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60(1):14–20. doi:10.1109/Tim.2010.2065450
Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19(2):801–816. doi:10.1016/j.simpat.2010.11.005
Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int J Numer Methods Biomed Eng 23(2):121–134. doi:10.1002/cnm.887
Goulette F, Chen Z-W (2015) Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links. Comput Methods Appl Mech Eng 295:18–38. doi:10.1016/j.cma.2015.06.015
Zhong Y, Shirinzadeh B, Alici G, Smith J (2008) A Poisson-based methodology for deformable object simulation. Int J Model Simul 28(2):156. doi:10.2316/Journal.205.2008.2.205-4551
Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, Cambridge
Selvadurai AP (2013) Partial differential equations in mechanics 2: the biharmonic equation, Poisson’s equation, vol 2. Springer, Berlin
Chua LO, Roska T (1993) The CNN Paradigm. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):147–156. doi:10.1109/81.222795
Thiran P, Setti G, Hasler M (1998) An approach to information propagation in 1-D cellular neural networks—part I: local diffusion. IEEE Trans Circuits Syst I Fundam Theory Appl 45(8):777–789. doi:10.1109/81.704819
Setti G, Thiran P, Serpico C (1998) An approach to information propagation in 1-D cellular neural networks—part II: global propagation. IEEE Trans Circuits Syst I Fundam Theory Appl 45(8):790–811. doi:10.1109/81.704820
Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Lotz K (1995) Simulating nonlinear waves and partial differential equations via CNN—part II: typical examples. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):816–820. doi:10.1109/81.473591
Szolgay P, Vörös G, Erőss G (1993) On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):222–227. doi:10.1109/81.222805
Roska T, Chua LO, Wolf D, Kozek T, Tetzlaff R, Puffer F (1995) Simulating nonlinear waves and partial differential equations via CNN—part I: basic techniques. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):807–815. doi:10.1109/81.473590
Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272. doi:10.1109/31.7600
Vijayan P, Kallinderis Y (1994) A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids. J Comput Phys 113(2):249–267. doi:10.1006/jcph.1994.1133
Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):559–577. doi:10.1109/81.473564
Jingya Z, Jiajun W, Xiuying W, Dagan F (2014) The adaptive FEM elastic model for medical image registration. Phys Med Biol 59(1):97–118. doi:10.1088/0031-9155/59/1/97
Bro-Nielsen M, Cotin S (1996) Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput Graph Forum 15(3):57–66. doi:10.1111/1467-8659.1530057
Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255. doi:10.1016/j.neucom.2010.03.021
Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118(S1):39–52. doi:10.1016/j.compstruc.2012.04.001
Picinbono G, Lombardo JC, Delingette H, Ayache N (2002) Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Anim 13(3):147–167. doi:10.1002/vis.257
Xia P (2016) New advances for haptic rendering: state of the art. Vis Comput. doi:10.1007/s00371-016-1324-y
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhang, J., Zhong, Y., Smith, J. et al. Neural dynamics-based Poisson propagation for deformable modelling. Neural Comput & Applic 31 (Suppl 2), 1091–1101 (2019). https://doi.org/10.1007/s00521-017-3132-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-017-3132-3