Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neural network approach for solving nonlinear eigenvalue problems of structural dynamics

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article introduces a novel connectionist approach for dynamic analysis of structural problem. In general, dynamic analysis of structures leads to eigenvalue problems. Sometimes these eigenvalue problems may be nonlinear eigenvalue problem, which may be difficult to address by traditional methods. As such, we have proposed here an artificial neural network (ANN)-based method to handle nonlinear eigenvalue problems. A four-layer ANN architecture has been constructed for handling the eigenvalue problems, and detailed ANN procedure has been included for clear understanding. Two example problems of overdamped spring mass system have been addressed to show the efficacy of the proposed method. Further, convergence plots and tables for different eigenvalues have also been included to validate the proposed ANN procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gao W, Yang C, Meza JC (2009) Solving a class of nonlinear eigenvalue problems by Newton’s method (No. LBNL-2187E). Lawrence Berkeley National Lab (LBNL), Berkeley

    Book  Google Scholar 

  2. Fazeli SA, Rabiei F (2016) Solving nonlinear eigenvalue problems using an improved Newton method. Int J Adv Comput Sci Appl 7(9):438–441

    Google Scholar 

  3. Kressner D (2009) A block Newton method for nonlinear eigenvalue problems. Numer Math 114(2):355–372

    Article  MathSciNet  MATH  Google Scholar 

  4. Sleijpen GLG, Van der Vorst HA (2000) A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev 42(2):267–293

    Article  MathSciNet  MATH  Google Scholar 

  5. Taseli H, Demiralp M (1988) Studies on algebraic methods to solve linear eigenvalue problems: generalised anharmonic oscillators. J Phys A Math Gen 21(20):3903–3919

    Article  MathSciNet  MATH  Google Scholar 

  6. Bickford WB (1987) An improved computational technique for perturbations of the generalized symmetric linear algebraic eigenvalue problem. Int J Numer Methods Eng 24(3):529–541

    Article  MathSciNet  MATH  Google Scholar 

  7. Adiyaman ME, Somali S (2012) A new approach for linear eigenvalue problems and nonlinear Euler buckling problem. Abstr Appl Anal 2012:1–21

    Article  MathSciNet  MATH  Google Scholar 

  8. Bosch J, Greif C (2017) Numerical solution of linear Eigenvalue problems. Geom Comput Spectr Theory 700:117

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu MT (1988) A note on the homotopy method for linear algebraic eigenvalue problems. Linear Algebra Appl 105:225–236

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochstenbach M, Romero E, Roman J (2012) Davidson type subspace expansions for the linear eigenvalue problem. Cahier de Recherche, Universitat politècnica de Valencia, vol 51

  11. Rajakumar C (1993) Lanczos algorithm for the quadratic eigenvalue problem in engineering applications. Comput Methods Appl Mech Eng 105(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  12. Tisseur F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43(2):235–286

    Article  MathSciNet  MATH  Google Scholar 

  13. Holz UB, Golub GH, Law KH (2004) A subspace approximation method for the quadratic eigenvalue problem. SIAM J Matrix Anal Appl 26(2):498–521

    Article  MathSciNet  MATH  Google Scholar 

  14. Bai Z, Su Y (2005) SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J Matrix Anal Appl 26(3):640–659

    Article  MathSciNet  MATH  Google Scholar 

  15. Misrikhanov MS, Ryabchenko VN (2006) The quadratic eigenvalue problem in electric power systems. Autom Remote Control 67(5):698–720

    Article  MathSciNet  MATH  Google Scholar 

  16. Hammarling S, Munro CJ, Tisseur F (2013) An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans Math Softw (TOMS) 39(3):18

    Article  MathSciNet  MATH  Google Scholar 

  17. Massa F, Lallemand B, Tison T (2015) Multi-level homotopy perturbation and projection techniques for the reanalysis of quadratic eigenvalue problems: the application of stability analysis. Mech Syst Signal Process 52(53):88–104

    Article  Google Scholar 

  18. Zheng TS, Liu WM, Cai ZB (1989) A generalized inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis. Comput Struct 33(5):1139–1143

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo CH, Lancaster P (2005) Algorithms for hyperbolic quadratic eigenvalue problems. Math Comput 74(252):1777–1791

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai YF, Kuo YC, Lin WW, Xu SF (2009) Solutions to a quadratic inverse eigenvalue problem. Linear Algebra Appl 430(5–6):1590–1606

    Article  MathSciNet  MATH  Google Scholar 

  21. Li H, Cai Y (2015) Solving the real eigenvalues of hermitian quadratic eigenvalue problems via bisection. Electron J Linear Algebra 30(1):721–743

    Article  MathSciNet  MATH  Google Scholar 

  22. Hwang TM, Lin WW, Liu JL, Wang W (2005) Jacobi-Davidson methods for cubic eigenvalue problems. Numer Linear Algebra Appl 12(7):605–624

    Article  MathSciNet  MATH  Google Scholar 

  23. Beyn WJ (2012) An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl 436(10):3839–3863

    Article  MathSciNet  MATH  Google Scholar 

  24. Demoulin YM, Chen Y (1975) An iteration method for solving nonlinear eigenvalue problems. SIAM J Appl Math 28(3):588–595

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehrmann V, Voss H (2004) Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27(2):121–152

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun J, Xu X (2016) Structure of solutions set of nonlinear eigenvalue problems. J Math Anal Appl 435(2):1410–1425

    Article  MathSciNet  MATH  Google Scholar 

  27. Voss H (2004) An Arnoldi method for nonlinear eigenvalue problems. BIT Numer Math 44(2):387–401

    Article  MathSciNet  MATH  Google Scholar 

  28. Rabinowitz PH (2009) Variational methods for nonlinear eigenvalue problems. In: Prodi G (ed) Eigenvalues of non-linear problems. Springer, Berlin, pp 139–195

    Chapter  Google Scholar 

  29. Betcke T, Higham NJ, Mehrmann V, Schröder C, Tisseur F (2013) NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans Math Softw (TOMS) 39(2):7

    Article  MathSciNet  MATH  Google Scholar 

  30. Lázaro M, Pérez-Aparicio JL (2014) Characterization of real eigenvalues in linear viscoelastic oscillators and the nonviscous set. J Appl Mech 81(2):021016-1–021016-14

    Article  Google Scholar 

  31. Chakraverty S, Mahato NR (2018) Nonlinear interval eigenvalue problems for damped spring-mass system. Eng Comput 35(6):2272–2286

    Article  Google Scholar 

  32. Jeswal SK, Chakraverty S (2018) Solving transcendental equation using artificial neural network. Appl Soft Comput 73:562–571

    Article  Google Scholar 

  33. Jeswal SK, Chakraverty S (2019) Connectionist model for solving static structural problems using fuzzy parameters. Appl Soft Comput 78:221–229

    Article  Google Scholar 

  34. Chakraverty S, Mall S (2017) Artificial neural networks for engineers and scientists: solving ordinary differential equations. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  35. Chakraverty S (2008) Vibration of plates. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeswal, S.K., Chakraverty, S. Neural network approach for solving nonlinear eigenvalue problems of structural dynamics. Neural Comput & Applic 32, 10669–10677 (2020). https://doi.org/10.1007/s00521-019-04600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04600-3

Keywords