Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Change detection and convolution neural networks for fall recognition

  • S.I. : Emerging applications of Deep Learning and Spiking ANN
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Accurate fall detection is a crucial research challenge since the time delay from fall to first aid is a key factor that determines the consequences of a fall. Wearable sensors allow a reliable way for motion tracking, allowing immediate detection of high-risk falls via a machine learning framework. Toward this direction, accelerometer devices are widely used for the assessment of fall risk. Although there exist a plethora of studies under this perspective, several challenges still remain, such as dealing simultaneously with extremely demanding data management, power consumption and prediction accuracy. In this work, we propose a complete methodology based on the cooperation of deep learning for signal classification along with a lightweight control chart method for change detection. Our basic assumption is that it is possible to control computational resources by selectively allowing the operation of a relatively heavyweight, but very efficient classifier, when it is truly required. The proposed methodology was applied to real experimental data providing the reliable results that justify the original hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.who.int/en/news-room/fact-sheets/detail/falls/.

  2. https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/.

  3. https://sites.google.com/up.edu.mx/challenge-up-2019/data.

References

  1. Abujiya M, Riaz M, Lee MH (2015) Enhanced cumulative sum charts for monitoring process dispersion. PLoS ONE 10:e0124520

    Article  Google Scholar 

  2. Aguiar B, Rocha T, Silva J, Sousa I (2014) Accelerometer-based fall detection for smartphones. In: 2014 IEEE international symposium on medical measurements and applications (MeMeA). IEEE, pp 1–6

  3. Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, Zijlstra W, Klenk J (2012) Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5):1–9. https://doi.org/10.1371/journal.pone.0037062

    Article  Google Scholar 

  4. Ballesteros MF, Webb K, McClure RJ (2017) A review of cdc’s web-based injury statistics query and reporting system (wisqars\(^{{\rm TM}}\)): planning for the future of injury surveillance. J Saf Res 61:211–215

    Article  Google Scholar 

  5. Bottou L (1998) On-line learning and stochastic approximations. In: In on-line learning in neural networks. Cambridge University Press, pp 9–42

  6. Bourke A, ÓLaighin G (2008) A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng Phys 30:84–90. https://doi.org/10.1016/j.medengphy.2006.12.001

    Article  Google Scholar 

  7. Branco P, Torgo L, Ribeiro RP (2016) A survey of predictive modeling on imbalanced domains. ACM Comput Surv 1:2. https://doi.org/10.1145/2907070

    Article  Google Scholar 

  8. Castillo JC, Carneiro D, Serrano-Cuerda J, Novais P, Fernández-Caballero A, Neves J (2014) A multi-modal approach for activity classification and fall detection. Int J Syst Sci 45(4):810–824

    Article  Google Scholar 

  9. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  10. Chen D, Feng W, Zhang Y, Li X, Wang T (2011) A wearable wireless fall detection system with accelerators. In: 2011 IEEE international conference on robotics and biomimetics, pp 2259–2263. https://doi.org/10.1109/ROBIO.2011.6181634

  11. Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z (2012) Sensor-based activity recognition. IEEE Trans Syst Man Cybern C (Applications and Reviews) 42(6):790–808. https://doi.org/10.1109/TSMCC.2012.2198883

    Article  Google Scholar 

  12. Florence CS, Bergen G, Atherly A, Burns E, Stevens J, Drake C (2018) Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc 66(4):693–698

    Article  Google Scholar 

  13. Gatouillat A, Badr Y, Massot B, Sejdić E (2018) Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J 5(5):3810–3822

    Article  Google Scholar 

  14. Georgakopoulos SV, Tasoulis SK, Maglogiannis I, Plagianakos VP (2015) On-line fall detection via mobile accelerometer data. In: Chbeir R, Manolopoulos Y, Maglogiannis I, Alhajj R (eds) Artificial intelligence applications and innovations. Springer, Cham, pp 103–112

    Chapter  Google Scholar 

  15. Georgakopoulos SV, Tasoulis SK, Plagianakos VP (2015) Efficient change detection for high dimensional data streams. In: 2015 IEEE international conference on big data (big data), pp 2219–2222. https://doi.org/10.1109/BigData.2015.7364010

  16. Granjon P (2014) The CuSum algorithm - a small review. Available online: https://hal.archives-ouvertes.fr/hal-00914697

  17. Greene S, Thapliyal H, Carpenter D (2016) Iot-based fall detection for smart home environments. In: 2016 IEEE international symposium on nanoelectronic and information systems (iNIS), pp 23–28. https://doi.org/10.1109/iNIS.2016.017

  18. He H, Ma Y (2013) Imbalanced learning: foundations, algorithms, and applications, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  19. Hsieh K, Heller T, Miller AB (2001) Risk factors for injuries and falls among adults with developmental disabilities. J Intell Disabil Res 45(1):76–82. https://doi.org/10.1111/j.1365-2788.2001.00277.x

    Article  Google Scholar 

  20. Huang CL, Chung CY (2004) A real-time model-based human motion tracking and analysis for human–computer interface systems. EURASIP J Adv Signal Process 2004(11):616891. https://doi.org/10.1155/S1110865704401206

    Article  Google Scholar 

  21. Igual R, Medrano CT, Plaza I (2013) Challenges, issues and trends in fall detection systems. Biomed Eng Online 12(1):66. https://doi.org/10.1186/1475-925X-12-66

    Article  Google Scholar 

  22. Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449

    Article  Google Scholar 

  23. Kau LJ, Chen CS (2015) A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J Biomed Health Inform 19(1):44–56

    Article  Google Scholar 

  24. Kepski M, Kwolek B (2014) Fall detection using ceiling-mounted 3d depth camera. In: 2014 international conference on computer vision theory and applications (VISAPP), vol 2. IEEE, pp 640–647

  25. Kwolek B, Kepski M (2014) Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput Methods Prog Biomed 117(3):489–501

    Article  Google Scholar 

  26. López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141. https://doi.org/10.1016/j.ins.2013.07.007

    Article  Google Scholar 

  27. Ma X, Wang H, Xue B, Zhou M, Ji B, Li Y (2014) Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J Biomed Health Inf 18(6):1915–1922. https://doi.org/10.1109/JBHI.2014.2304357

    Article  Google Scholar 

  28. Maglogiannis I, Doukas C (2014) Intelligent health monitoring based on pervasive technologies and cloud computing. Int J Artif Intell Tools 23(03):1460001. https://doi.org/10.1142/S021821301460001X

    Article  Google Scholar 

  29. Maglogiannis I, Ioannou C, Tsanakas P (2016) Fall detection and activity identification using wearable and hand-held devices. Integr Comput Aided Eng 23:161–172. https://doi.org/10.3233/ICA-150509

    Article  Google Scholar 

  30. Mauldin T, Canby M, Metsis V, Ngu A, Rivera C (2018) Smartfall: a smartwatch-based fall detection system using deep learning. Sensors 18(10):3363

    Article  Google Scholar 

  31. Mauldin TR, Canby ME, Metsis V, Ngu AHH, Rivera CC (2018) Smartfall: a smartwatch-based fall detection system using deep learning. Sensors. https://doi.org/10.3390/s18103363

    Article  Google Scholar 

  32. Musci M, De Martini D, Blago N, Facchinetti T, Piastra M (2018) Online fall detection using recurrent neural networks. arXiv:1804.04976

  33. Nguyen gia T, Tcarenko I, Sarker V, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2016) Iot-based fall detection system with energy efficient sensor nodes. In: 2016 IEEE nordic circuits and systems conference (NORCAS), pp 1–6. https://doi.org/10.1109/NORCHIP.2016.7792890

  34. Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115

    Article  MathSciNet  Google Scholar 

  35. Patel H, Rajput DS, Reddy GT, Iwendi C, Bashir AK, Jo O (2020) A review on classification of imbalanced data for wireless sensor networks. Int J Distrib Sens Netw 16(4):1550147720916404. https://doi.org/10.1177/1550147720916404

    Article  Google Scholar 

  36. Perry MB, Pignatiello JJ (2011) Estimating the time of step change with poisson CUSUM and EWMA control charts. Int J Prod Res 49(10):2857–2871

    Article  Google Scholar 

  37. Pierleoni P, Belli A, Palma L, Pellegrini M, Pernini L, Valenti S (2015) A high reliability wearable device for elderly fall detection. IEEE Sens J 15(8):4544–4553

    Article  Google Scholar 

  38. Provost F, Fawcett T (1997) Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: Proceedings of the third international conference on knowledge discovery and data mining. AAAI Press, pp 43–48

  39. Ranakoti S, Arora S, Chaudhary S, Beetan S, Sandhu AS, Khandnor P, Saini P (2019) Human fall detection system over IMU sensors using triaxial accelerometer. Computational intelligence: theories, applications and future directions, vol I. Springer, Singapore, pp 495–507. https://doi.org/10.1007/978-981-13-1132-1_39

    Chapter  Google Scholar 

  40. Santos GL, Endo PT, Monteiro KHdC, Rocha EdS, Silva I, Lynn T (2019) Accelerometer-based human fall detection using convolutional neural networks. Sensors 19(7):1644

    Article  Google Scholar 

  41. Shen RK, Yang CY, Shen VR, Chen WC (2017) A novel fall prediction system on smartphones. IEEE Sens J 17(6):1865–1871

    Article  Google Scholar 

  42. Sucerquia A, López J, Vargas-Bonilla J (2017) Sisfall: a fall and movement dataset. Sensors 17(1):198

    Article  Google Scholar 

  43. Tasoulis S, Doukas C, Plagianakos V, Maglogiannis I (2013) Statistical data mining of streaming motion data for activity and fall recognition in assistive environments. Neurocomputing 107:87–96. https://doi.org/10.1016/j.neucom.2012.08.036

    Article  Google Scholar 

  44. Theodoridis T, Solachidis V, Vretos N, Daras P (2018) Human fall detection from acceleration measurements using a recurrent neural network. In: Maglaveras N, Chouvarda I, de Carvalho P (eds) Precision medicine powered by phealth and connected health. Springer, Singapore, pp 145–149

    Chapter  Google Scholar 

  45. Tong L, Song Q, Ge Y, Liu M (2013) Hmm-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sens J 13(5):1849–1856. https://doi.org/10.1109/JSEN.2013.2245231

    Article  Google Scholar 

  46. Tran PH, Tran KP (2016) The efficiency of CUSUM schemes for monitoring the coefficient of variation. Appl Stoch Models Bus Ind 32(6):870–881. https://doi.org/10.1002/asmb.2213

    Article  MathSciNet  Google Scholar 

  47. Wang D, Zhang L, Xiong Q (2017) A non parametric CUSUM control chart based on the Mann–Whitney statistic. Commun Stat Theory Methods 46(10):4713–4725

    Article  MathSciNet  Google Scholar 

  48. Wang J, Chen Y, Hao S, Peng X, Hu L (2019) Deep learning for sensor-based activity recognition: a survey. Pattern Recognit Lett 119:3–11

    Article  Google Scholar 

  49. Wang J, Zhang Z, Bin L, Lee S, Sherratt R (2014) An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans Consum Electron 60:23–29. https://doi.org/10.1109/TCE.2014.6780921

    Article  Google Scholar 

  50. Xu T, Zhou Y, Zhu J (2018) New advances and challenges of fall detection systems: a survey. Appl Sci. https://doi.org/10.3390/app8030418

    Article  Google Scholar 

  51. Xu T, Zhou Y, Zhu J (2018) New advances and challenges of fall detection systems: a survey. Appl Sci 8(3):418

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under Grant Agreement No 1901. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris K. Tasoulis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgakopoulos, S.V., Tasoulis, S.K., Mallis, G.I. et al. Change detection and convolution neural networks for fall recognition. Neural Comput & Applic 32, 17245–17258 (2020). https://doi.org/10.1007/s00521-020-05208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05208-8

Keywords