Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Data-driven wind turbine wake modeling via probabilistic machine learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions and the interaction between wakes. Physics-based models that capture the wake flow field with high-fidelity are computationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced-order models can represent an efficient alternative for simulating wind farms. In this work, we use real-world light detection and ranging (LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning. Specifically, we first demonstrate the use of deep autoencoders to find a low-dimensional latent space that gives a computationally tractable approximation of the wake LiDAR measurements. Then, we learn the mapping between the parameter space and the (latent space) wake flow fields using a deep neural network. Additionally, we also demonstrate the use of a probabilistic machine learning technique, namely, Gaussian process modeling, to learn the parameter-space-latent-space mapping in addition to the epistemic and aleatoric uncertainty in the data. Finally, to cope with training large datasets, we demonstrate the use of variational Gaussian process models that provide a tractable alternative to the conventional Gaussian process models for large datasets. Furthermore, we introduce the use of active learning to adaptively build and improve a conventional Gaussian process model predictive capability. Overall, we find that our approach provides accurate approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those generated with high-fidelity physics-based simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The original LiDAR data used in this work are available upon reasonable request from the fourth author, who may be contacted at valerio.iungo@utdallas.edu.

References

  1. Barron AR (1993) Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inf Theory 39(3):930–945

    Article  MathSciNet  Google Scholar 

  2. Barthelmie R, Pryor S, Frandsen S, Hansen K, Schepers J, Rados K, Schelz W, Neubert A, Jensen L, Neckelmann S (2010) Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J Atmos Ocean Technol. https://doi.org/10.1175/2010JTECHA1398.1

    Article  Google Scholar 

  3. Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123. https://doi.org/10.1016/j.renene.2014.01.002

    Article  MATH  Google Scholar 

  4. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians. J Am Stat Assoc 112(518):859–877

    Article  MathSciNet  Google Scholar 

  5. Breton S, Sumner J, Sørensen JN, Hansen KS, Sarmast S, Ivanell S (2017) A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (20160097)

  6. Cheng M, Fang F, Pain C, Navon I (2020) An advanced hybrid deep adversarial autoencoder for parameterized nonlinear fluid flow modelling. Comput Methods Appl Mech Eng 372:113375

    Article  MathSciNet  Google Scholar 

  7. Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbulence 13:1–32. https://doi.org/10.1080/14685248.2012.668191

    Article  MathSciNet  Google Scholar 

  8. Cohn DA, Ghahramani Z, Jordan MI (1995) Active learning with statistical models. Tech. rep., Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab

  9. Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with statistical models. J Artif Intell Res 4:129–145

    Article  Google Scholar 

  10. Conti D, Dimitrov N, Peña A (2020) Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements. Wind Energy Sci 5(3):1129–1154. https://doi.org/10.5194/wes-5-1129-2020

    Article  Google Scholar 

  11. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1339

    Article  MathSciNet  Google Scholar 

  12. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  MathSciNet  Google Scholar 

  13. El-Asha S, Zhan L, Iungo G (2017) Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data. Wind Energy 20(June):1823–1839. https://doi.org/10.1002/we.2123

    Article  Google Scholar 

  14. Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53. https://doi.org/10.1002/we.189

    Article  Google Scholar 

  15. Fukami K, Nakamura T, Fukagata K (2020) Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Phys Fluids 32(9):095110

    Article  Google Scholar 

  16. Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall/CRC, Boca Rato

    Book  Google Scholar 

  17. Gonzalez FJ, Balajewicz M (2018) Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. arXiv preprint arXiv:1808.01346

  18. Hensman J, Matthews A, Ghahramani Z (2015) Scalable variational gaussian process classification. In: Artificial Intelligence and Statistics, pp. 351–360. PMLR

  19. Iungo GV, Porté-Agel F (2014) Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes. J Atmos Oceanic Technol 31(10):2035–2048

    Article  Google Scholar 

  20. Iungo GV, Santhanagopalan V, Ciri U, Viola F, Zhan L, Rotea MA, Leonardi S (2018) Parabolic rans solver for low-computational-cost simulations of wind turbine wakes. Wind Energy 21(3):184–197

    Article  Google Scholar 

  21. Jensen NO (1983) A note on wind generator interaction. Tech. rep., Risø, Roskilde, Denmark. DOI Riso-M-2411. URL http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf

  22. Kim Y, Choi Y, Widemann D, Zohdi T (2020) A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder. arXiv preprint arXiv:2009.11990

  23. Letizia S, Zhan L, Valerio Iungo G (2021) LiSBOA: LiDAR Statistical Barnes Objective Analysis for optimal design of LiDAR scans and retrieval of wind statistics. Part I: Theoretical framework. Atmos Measurement Tech 14:2065–2093. https://doi.org/10.5194/amt-14-2065-2021

    Article  Google Scholar 

  24. Machefaux E, Larsen GC, Koblitz T, Troldborg N, Kelly MC, Chougule A, Hansen KS, Rodrigo JS (2016) An experimental and numerical study of the atmospheric stability impact on wind turbine wakes. Wind Energy 19(10):1785–1805

    Article  Google Scholar 

  25. Matérn B (2013) Spatial variation, vol 36. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  26. Maulik R, Lusch B, Balaprakash P (2021) Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys Fluids 33(3):037106

    Article  Google Scholar 

  27. Maulik R, Rao V, Renganathan SA, Letizia S, Iungo GV (2021) Cluster analysis of wind turbine wakes measured through a scanning doppler wind lidar. In: AIAA Scitech 2021 Forum, p. 1181

  28. Mehta D, Zuijlen AHV, Koren B, Holierhoek JG, Bijl H (2014) Large Eddy Simulation of wind farm aerodynamics: a review. J Wind Eng Ind Aerodyn 133:1–17. https://doi.org/10.1016/j.jweia.2014.07.002

    Article  Google Scholar 

  29. Murata T, Fukami K, Fukagata K (2020) Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J Fluid Mech, 882

  30. Porté-agel F, Bastankhah M, Shamsoddin S (2019) Wind-Turbine and Wind-Farm Flows: a review. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-019-00473-0

    Article  Google Scholar 

  31. Rajaram D, Puranik TG, Ashwin Renganathan S, Sung W, Fischer OP, Mavris DN, Ramamurthy A (2021) Empirical assessment of deep gaussian process surrogate models for engineering problems. J Aircraft 58(1):182–196

    Article  Google Scholar 

  32. Rajaram D, Puranik TG, Renganathan A, Sung WJ, Pinon-Fischer OJ, Mavris DN, Ramamurthy A (2020) Deep gaussian process enabled surrogate models for aerodynamic flows. In: AIAA Scitech 2020 Forum, p. 1640

  33. Renganathan SA (2020) Koopman-based approach to nonintrusive reduced order modeling: Application to aerodynamic shape optimization and uncertainty propagation. AIAA J 58(5):2221–2235

    Article  Google Scholar 

  34. Renganathan SA, Larson J, Wild SM (2021) Lookahead acquisition functions for finite-horizon time-dependent bayesian optimization and application to quantum optimal control. arXiv preprint arXiv:2105.09824

  35. Renganathan SA, Liu Y, Mavris DN (2018) Koopman-based approach to nonintrusive projection-based reduced-order modeling with black-box high-fidelity models. AIAA J 56(10):4087–4111

    Article  Google Scholar 

  36. Renganathan SA, Maulik R, Ahuja J (2021) Enhanced data efficiency using deep neural networks and gaussian processes for aerodynamic design optimization. Aerospace Sci Technol 111:106522

    Article  Google Scholar 

  37. Renganathan SA, Maulik R, Rao V (2020) Machine learning for nonintrusive model order reduction of the parametric inviscid transonic flow past an airfoil. Phys Fluids 32(4):047110

    Article  Google Scholar 

  38. Sanderse B, van der Pijl S, Koren B (2011) Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 14: 799–819. https://doi.org/10.1002/we.1608/full. URL http://onlinelibrary.wiley.com/doi/10.1002/we.1608/full

  39. Santner TJ, Williams BJ, Notz WI, Williams BJ (2003) The design and analysis of computer experiments, vol 1. Springer, Berlin

    Book  Google Scholar 

  40. Santoni C, Garcia-Cartagena EJ, Ciri U, Zhan L, Iungo GV, Leonardi S (2020) One-way mesoscale-microscale coupling for simulating a wind farm in North Texas: Assessment against SCADA and LiDAR data. Wind Energy 23(3):691–710

    Article  Google Scholar 

  41. Sanz Rodrigo J, Chávez Arroyo RA, Moriarty P, Churchfield M, Kosović B, Réthoré PE, Hansen KS, Hahmann A, Mirocha JD, Rife D (2017) Mesoscale to microscale wind farm flow modeling and evaluation. Wiley Interdisciplinary Reviews: Energy and Environment 6(2). https://doi.org/10.1002/wene.214

  42. Sebastiani A, Segalini A, Castellani F, Crasto G (2020) Data analysis and simulation of the Lillgrund wind farm. Wind Energy (November). https://doi.org/10.1002/we.2594

    Article  Google Scholar 

  43. Snelson E, Ghahramani Z (2005) Sparse gaussian processes using pseudo-inputs. Adv Neural Inf Process Syst 18:1257–1264

    Google Scholar 

  44. Stein ML (2012) Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, Berlin

    Google Scholar 

  45. U.S.G.S. (2017) U.S. Geological Survey Website. URL https://www.usgs.gov/43

  46. Veers P, Dykes K, Lantz E, Barth S, Bottasso C, Carlson O, Clifton A, Green J, Green P, Holttinen H, Laird D, Lehtomäki V, Lundquist J, Manwell J, Marquis M, Meneveau C, Moriarty P, Munduate X, Muskulus M, Naughton J, Pao L, Paquette J, Peinke J, Robertson A, Rodrigo JS, Sempreviva A, Smith J, Tuohy A, Wiser R (2019) Grand challenges in the science of wind energy. Science. https://doi.org/10.1126/science.aau2027

    Article  Google Scholar 

  47. Vennemann B, Rösgen T (2020) A dynamic masking technique for particle image velocimetry using convolutional autoencoders. Exp Fluids 61(7):1–11

    Article  Google Scholar 

  48. Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning, vol 2. MIT press, Cambridge, MA

    MATH  Google Scholar 

  49. Wu P, Gong S, Pan K, Qiu F, Feng W, Pain C (2021) Reduced order model using convolutional auto-encoder with self-attention. Phys Fluids 33(7):077107

    Article  Google Scholar 

  50. Zhan L, Letizia S, Iungo GV (2020) Optimal tuning of engineering wake models through lidar measurements. Wind Energy Sci 5(4):1601–1622. https://doi.org/10.5194/wes-5-1601-2020

    Article  Google Scholar 

  51. Zhan L, Letizia S, Valerio Iungo G (2020) Lidar measurements for an onshore wind farm: wake variability for different incoming wind speeds and atmospheric stability regimes. Wind Energy 23(3):501–527

    Article  Google Scholar 

Download references

Acknowledgements

This material is partially based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This research was funded in part and used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. SAR acknowledges the support by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357. This research has been partially funded by a grant from the National Science Foundation CBET Fluid Dynamics, award number 1705837. Pattern Energy Group is acknowledged to provide access to the wind farm for the LiDAR experiment and wind farm data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashwin Renganathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin Renganathan, S., Maulik, R., Letizia, S. et al. Data-driven wind turbine wake modeling via probabilistic machine learning. Neural Comput & Applic 34, 6171–6186 (2022). https://doi.org/10.1007/s00521-021-06799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06799-6

Keywords