Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a hybrid cooperative differential evolution with the perturbation of the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) with the local search of Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) mechanism, named jSO_CMA-ES_LBFGS, is proposed to solve the complex continuous problems. In the proposed algorithm, jSO, as a variant of Differential Evolution (DE), is used as a global search operator to explore the entire solution space. When the population falls into stagnation, a relatively reliable initial solution for the local search operator is generated by the CMA-ES, which is activated to perturb the optimal candidates in the solution space. The LBFGS utilized as the local search strategy is embedded in CMA-ES to obtain the potential local optimal solutions. A cooperative co-evolutionary dynamic system is formed by jSO and CMA-ES with a local search operator. The proposed jSO_CMA-ES_LBFGS is tested on the CEC2017 benchmark test suite and compared with eleven state-of-the-art algorithms. Further, two practical engineering problems are investigated utilizing the proposed method. The experimental results reveal the effectiveness and efficiency of the jSO_CMA-ES_LBFGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang JJ, Wang L (2020) A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop. IEEE Trans Syst Man, Cybern Syst 50:1805–1819. https://doi.org/10.1109/TSMC.2017.2788879

    Article  Google Scholar 

  2. Zhao F, He X, Wang L (2020) A two-stage cooperative evolutionary algorithm With problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2020.3025662

    Article  Google Scholar 

  3. Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl 32:9383–9425. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  4. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl 31:7665–7683. https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  5. Cao F (2020) PID controller optimized by genetic algorithm for direct-drive servo system. Neural Comput Appl 32:23–30. https://doi.org/10.1007/s00521-018-3739-z

    Article  Google Scholar 

  6. Xu B, Cheng W, Qian F, Huang X (2019) Self-adaptive differential evolution with multiple strategies for dynamic optimization of chemical processes. Neural Comput Appl 31:2041–2061. https://doi.org/10.1007/s00521-018-03985-x

    Article  Google Scholar 

  7. Wang K, Li X, Gao L et al (2021) A discrete artificial bee colony algorithm for multiobjective disassembly line balancing of end-of-life products. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3042896

    Article  Google Scholar 

  8. Hu Y, Zhang Y, Gong D (2020) Multiobjective particle swarm optimization for feature selection with fuzzy cost. IEEE Trans Cybern 51:874–888. https://doi.org/10.1109/tcyb.2020.3015756

    Article  Google Scholar 

  9. Heidari AA, Aljarah I, Faris H et al (2020) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32:5185–5211. https://doi.org/10.1007/s00521-019-04015-0

    Article  Google Scholar 

  10. Storn R, Price K (1997) Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  11. Biswas PP, Suganthan PN, Wu G, Amaratunga GAJ (2019) Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew Energy 132:425–438. https://doi.org/10.1016/j.renene.2018.07.152

    Article  Google Scholar 

  12. Zhao F, Zhao L, Wang L, Song H (2020) An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113678

    Article  Google Scholar 

  13. Li T, Pan Q, Gao L, Li P (2017) Differential evolution algorithm-based range image registration for free-form surface parts quality inspection. Swarm Evol Comput 36:106–123. https://doi.org/10.1016/j.swevo.2017.04.006

    Article  Google Scholar 

  14. Wu G, Shen X, Li H et al (2018) Ensemble of differential evolution variants. Inf Sci (Ny) 423:172–186. https://doi.org/10.1016/j.ins.2017.09.053

    Article  MathSciNet  Google Scholar 

  15. Yang Z, Qiu H, Gao L et al (2020) Surrogate-assisted classification-collaboration differential evolution for expensive constrained optimization problems. Inf Sci (Ny) 508:50–63. https://doi.org/10.1016/j.ins.2019.08.054

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai X, Gao L, Li X, Qiu H (2019) Surrogate-guided differential evolution algorithm for high dimensional expensive problems. Swarm Evol Comput 48:288–311. https://doi.org/10.1016/j.swevo.2019.04.009

    Article  Google Scholar 

  17. Tian M, Gao X (2019) An improved differential evolution with information intercrossing and sharing mechanism for numerical optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2017.12.010

    Article  Google Scholar 

  18. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12:107–125. https://doi.org/10.1109/TEVC.2007.895272

    Article  Google Scholar 

  19. Brest J, Maučec MS, Bošković B (2017) Single objective real-parameter optimization: Algorithm jSO. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 1311–1318

  20. Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 372–379

  21. Meng Z, Pan JS, Kong L (2018) Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution. Knowl Based Syst 141:92–112. https://doi.org/10.1016/j.knosys.2017.11.015

    Article  Google Scholar 

  22. Jadon SS, Tiwari R, Sharma H, Bansal JC (2017) hybrid artificial bee Colony algorithm with differential evolution. Appl Soft Comput J 58:11–24. https://doi.org/10.1016/j.asoc.2017.04.018

    Article  Google Scholar 

  23. Elaziz MA, Xiong S, Jayasena KPN, Li L (2019) Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl Based Syst 169:39–52. https://doi.org/10.1016/j.knosys.2019.01.023

    Article  Google Scholar 

  24. Yildizdan G, Baykan ÖK (2020) A novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2019.112949

    Article  Google Scholar 

  25. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13:945–958. https://doi.org/10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  26. Mohamed AW, Hadi AA, Fattouh AM, Jambi KM (2017) LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 145–152

  27. Ibrahim RA, Elaziz MA, Lu S (2018) Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst Appl 108:1–27. https://doi.org/10.1016/j.eswa.2018.04.028

    Article  Google Scholar 

  28. Segredo E, Lalla-Ruiz E, Hart E, Voß S (2018) On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Syst Appl 102:126–142. https://doi.org/10.1016/j.eswa.2018.02.024

    Article  Google Scholar 

  29. De Melo VV, Iacca G (2014) A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization. Expert Syst Appl 41:7077–7094. https://doi.org/10.1016/j.eswa.2014.06.032

    Article  Google Scholar 

  30. Shuster JJ (2007) Design and analysis of experiments. Methods Mol Biol 404:235–259

    Article  Google Scholar 

  31. Brest J, Maučec MS, Bošković B (2016) IL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation, CEC 2016. Institute of Electrical and Electronics Engineers Inc., pp 1188–1195

  32. Gol Alikhani M, Javadian N, Tavakkoli-Moghaddam R (2009) A novel hybrid approach combining electromagnetism-like method with Solis and Wets local search for continuous optimization problems J. Glob Optim 44:227–234. https://doi.org/10.1007/s10898-008-9320-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Tseng LY, Chen C (2008) Multiple trajectory search for large scale global optimization. In: 2008 IEEE Congress on Evolutionary Computation, CEC 2008. pp 3052–3058

  34. Liu J, Zhang S, Wu C et al (2016) A hybrid approach to constrained global optimization. Appl Soft Comput J 47:281–294. https://doi.org/10.1016/j.asoc.2016.05.021

    Article  Google Scholar 

  35. Shi Z, Yang G, Xiao Y (2016) A limited memory BFGS algorithm for non-convex minimization with applications in matrix largest eigenvalue problem. Math Methods Oper Res 83:243–264. https://doi.org/10.1007/s00186-015-0527-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Biglari F (2015) Dynamic scaling on the limited memory BFGS method. Eur J Oper Res 243:697–702. https://doi.org/10.1016/j.ejor.2014.12.050

    Article  MathSciNet  MATH  Google Scholar 

  37. Badem H, Basturk A, Caliskan A, Yuksel ME (2017) A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms. Neurocomputing 266:506–526. https://doi.org/10.1016/j.neucom.2017.05.061

    Article  Google Scholar 

  38. Burton RM (1985) Pointwise properties of convergence in probability. Stat Probab Lett 3:315–316. https://doi.org/10.1016/0167-7152(85)90063-X

    Article  MATH  Google Scholar 

  39. Saunders IW, Ross SM (1985) Stochastic processes. J Am Stat Assoc 80:250. https://doi.org/10.2307/2288101

    Article  Google Scholar 

  40. Wu, Guohua; Mallipeddi, Rammohan; Suganthan P Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization

  41. Wu G, Mallipeddi R, Suganthan P Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization

  42. Auger A, Hansen N (2011) CMA-ES: evolution strategies and covariance matrix adaptation. In: Genetic and evolutionary computation conference, GECCO’11 - Companion Publication. pp 991–1010

  43. Knight JN, Lunacek M (2007) Reducing the space-time complexity of the CMA-ES. In: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference. pp 658–665

  44. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  45. Cui L, Li G, Zhu Z et al (2018) Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Inf Sci (Ny) 422:122–143. https://doi.org/10.1016/j.ins.2017.09.002

    Article  MathSciNet  Google Scholar 

  46. Mohamed AW, Hadi AA, Jambi KM (2019) Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2018.10.006

    Article  Google Scholar 

  47. Kumar A, Misra RK, Singh D (2017) Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase. In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 1835–1842

  48. Awad NH, Ali MZ, Suganthan PN, Reynolds RG (2016) An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In: 2016 IEEE Congress on Evolutionary Computation, CEC 2016. Institute of Electrical and Electronics Engineers Inc., pp 2958–2965

  49. Zhao F, Zhang L, Zhang Y et al (2020) An improved water wave optimisation algorithm enhanced by CMA-ES and opposition-based learning. Conn Sci 32:132–161. https://doi.org/10.1080/09540091.2019.1674247

    Article  Google Scholar 

  50. Zhan ZH, Zhang J, Li Y, Shi YH (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15:832–847. https://doi.org/10.1109/TEVC.2010.2052054

    Article  Google Scholar 

  51. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics 15:617–644. https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  52. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  53. Shao Z, Pi D, Shao W (2019) A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem. Knowl Based Syst 165:110–131. https://doi.org/10.1016/j.knosys.2018.11.021

    Article  Google Scholar 

  54. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6:154–160. https://doi.org/10.1287/ijoc.6.2.154

    Article  MATH  Google Scholar 

  55. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64:278–285. https://doi.org/10.1016/0377-2217(93)90182-M

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under grant 62063021. It was also supported by Key talent project of Gansu Province (ZZ2021G50700016), the Key Research Programs of Science and Technology Commission Foundation of Gansu Province (21YF5WA086), Lanzhou Science Bureau project (2018-rc-98), Project of Zhejiang Natural Science Foundation (LGJ19E050001), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqing Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Bao, H., Wang, L. et al. A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism. Neural Comput & Applic 34, 7173–7197 (2022). https://doi.org/10.1007/s00521-021-06849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06849-z

Keywords