Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quasi-bipartite synchronization of heterogeneous memristive neural networks via pinning control

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on quasi-bipartite synchronization of heterogeneous memristive neural networks (MNNs) with cooperative–competitive interactions. Firstly, MNNs with nonidentical uncertain parameters are investigated. A pinning control is adopted to study robust quasi-bipartite synchronization of uncertain MNNs over the signed graph. A sufficient condition is derived for robust quasi-bipartite synchronization. Secondly, a more general heterogeneous MNNs is further discussed over the signed graph. Due to the heterogeneities of the MNNs, quasi-bipartite synchronization is studied and the corresponding sufficient condition is obtained. Additionally, the upper bounds of quasi-bipartite synchronization for two kinds of MNNs are given. Finally, two examples are given to illustrate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  2. Tour JM, He T (2008) Electronics: the fourth element. Nature 453(7191):42–43

    Article  Google Scholar 

  3. Guo Z, Wang J, Yan Z (2013) Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(4):704–717

    Article  Google Scholar 

  4. Wu A, Zhang J, Zeng Z (2011) Dynamic behaviors of a class of memristor-based Hopfield networks. Phys Lett A 375(15):1661–1665

    Article  MathSciNet  MATH  Google Scholar 

  5. Du C, Cai F, Zidan MA, Ma W, Lee SH, Lu WD (2017) Reservoir computing using dynamic memristors for temporal information processing. Nat Commun 8(1):1–10

    Article  Google Scholar 

  6. Mislovaty R, Klein E, Kanter I, Kinzel W (2003) Public channel cryptography by synchronization of neural networks and chaotic maps. Phys Rev Lett 91(11):118701

    Article  Google Scholar 

  7. Wen S, Hu R, Yang Y, Huang T, Zeng Z, Song YD (2018) Memristor-based echo state network with online least mean square. IEEE Trans Syst Man Cybern Syst 49(9):1787–1796

    Article  Google Scholar 

  8. Guo Z, Yang S, Wang J (2014) Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling. IEEE Trans Neural Netw Learn Syst 26(6):1300–1311

    Article  MathSciNet  Google Scholar 

  9. Feng Y, Yang X, Song Q, Cao J (2018) Synchronization of memristive neural networks with mixed delays via quantized intermittent control. Appl Math Comput 339:874–887

    MathSciNet  MATH  Google Scholar 

  10. Li Y, Luo B, Liu D, Yang Z, Zhu Y (2020) Adaptive synchronization of memristor-based neural networks with discontinuous activations. Neurocomputing 381:196–206

    Article  Google Scholar 

  11. Gong S, Guo Z, Wen S, Huang T (2019) Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay. IEEE Trans Cybern 51(6):2944–2955

    Article  Google Scholar 

  12. Zhu S, Liu D, Yang C, Fu J (2019) Synchronization of memristive complex-valued neural networks with time delays via pinning control method. IEEE Trans Cybern 50(8):3806–3815

    Article  Google Scholar 

  13. Wang Z, Jin X, Pan L, Feng Y, Cao J (2022) Quasi-synchronization of delayed stochastic multiplex networks via impulsive pinning control. IEEE Trans Syst Man Cybern Syst 52(9):5389–5397

    Article  Google Scholar 

  14. Feng J, Chen S, Wang J, Zhao Y (2018) Quasi-synchronization of coupled nonlinear memristive neural networks with time delays by pinning control. IEEE Access 6:26271–26282

    Article  Google Scholar 

  15. Zhang W, Qi J (2021) Synchronization of coupled memristive inertial delayed neural networks with impulse and intermittent control. Neural Comput Appl 33(13):7953–7964

    Article  Google Scholar 

  16. Altafini C (2013) Consensus problems on networks with antagonistic interactions. IEEE Trans Autom Control 58(4):935–946

    Article  MathSciNet  MATH  Google Scholar 

  17. Ayepah K, Sun M, Lyu D (2022) Practical prescribed-time bipartite synchronization of interacting neural networks via high-gain coupling. In: Neural computing and applications, pp 1–10

  18. Xu D, Pang J, Su H (2021) Bipartite synchronization of signed networks via aperiodically intermittent control based on discrete-time state observations. Neural Netw 144:307–319

    Article  Google Scholar 

  19. Liu F, Song Q, Wen G, Cao J, Yang X (2018) Bipartite synchronization in coupled delayed neural networks under pinning control. Neural Netw 108:146–154

    Article  MATH  Google Scholar 

  20. Ren J, Song Q, Gao Y, Zhao M, Lu G (2021) Leader-following consensus of delayed neural networks under multi-layer signed graphs. Neurocomputing 450:168–182

    Article  Google Scholar 

  21. Zhang L, Yang Y (2021) Bipartite finite time synchronization for general Caputo fractional-order impulsive coupled networks. Neural Comput Appl 33:2459–2470

    Article  Google Scholar 

  22. Li N, Zheng WX (2020) Bipartite synchronization of multiple memristor-based neural networks with antagonistic interactions. IEEE Trans Neural Netw Learn Syst 32(4):1642–1653

    Article  MathSciNet  Google Scholar 

  23. Dong Y, Guo L, Hao J (2020) Robust exponential stabilization for uncertain neutral neural networks with interval time-varying delays by periodically intermittent control. Neural Comput Appl 32:2651–2664

    Article  Google Scholar 

  24. Mao K, Liu X, Cao J, Hu Y (2022) Finite-time bipartite synchronization of coupled neural networks with uncertain parameters. Physica A 585:126431

    Article  MathSciNet  MATH  Google Scholar 

  25. Yao W, Wang C, Sun Y, Zhou C (2020) Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays. IEEE Trans Syst Man Cybern Syst 52(1):260–274

    Article  Google Scholar 

  26. Song Y, Zeng Z, Sun W (2020) Quasi-synchronization of stochastic memristor-based neural networks with mixed delays and parameter mismatches. Neural Comput Appl 32:4615–4628

    Article  Google Scholar 

  27. Xin Y, Li Y, Huang X, Cheng Z (2017) Quasi-synchronization of delayed chaotic memristive neural networks. IEEE Trans Cybern 49(2):712–718

    Article  Google Scholar 

  28. Ding S, Wang Z, Zhang H (2018) Quasi-synchronization of delayed memristive neural networks via region-partitioning-dependent intermittent control. IEEE Trans Cybern 49(12):4066–4077

    Article  Google Scholar 

  29. Yang S, Guo Z, Wang J (2015) Robust synchronization of multiple memristive neural networks with uncertain parameters via nonlinear coupling. IEEE Trans Syst Man Cybern Syst 45(7):1077–1086

    Article  Google Scholar 

  30. Ding S, Wang Z, Zhang H (2018) Quasi-synchronization of delayed memristive neural networks via region-partitioning-dependent intermittent control. IEEE Trans Cybern 49(12):4066–4077

    Article  Google Scholar 

  31. Li Y, Luo B, Liu D, Yang Y, Yang Z (2019) Robust exponential synchronization for memristor neural networks with nonidentical characteristics by pinning control. IEEE Trans Syst Man Cybern Syst 51(3):1966–1980

    Google Scholar 

  32. Huang T, Li C, Liao X (2007) Synchronization of a class of coupled chaotic delayed systems with parameter mismatch. Chaos 17(3):033121

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Qing Lan Project of Jiangsu Province of China, the National Natural Science Foundation of China under Grant Nos. 61802201 and 62073172, and the NUPTSF under Grant No. NY220032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, Z., Feng, Y. et al. Quasi-bipartite synchronization of heterogeneous memristive neural networks via pinning control. Neural Comput & Applic 35, 7801–7815 (2023). https://doi.org/10.1007/s00521-022-08087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08087-3

Keywords