Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Hypergraph convolutional network for hyperspectral image classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, graph-based neural networks have been investigated in hyperspectral image (HSI) classification to address the limited global feature representation capability issue of HSI classification methods based on convolutional neural networks (CNN). However, most of the existing graph-based neural networks for HSI classification methods either characterize the relation information by the pair-wise modeling or rely on the CNNs to extract the local spectral–spatial features. To solve this problem, in this paper, a concise hypergraph convolutional network (HGCN) is proposed for semi-supervised HSI classification. To effectively and efficiently capture the global and local features of HSI, the hypergraph model is established on superpixel level which characterizes the spectral affinities rather than the spatial distance. The designed hypergraph model not only incorporates the local homogeneity and complex correlations of HSI but also consumes little computation. Two hypergraph convolution layers are designed to propagate and update the features of nodes. To construct an end-to-end architecture, a mapping matrix is defined for pixels encoding and superpixels decoding. The proposed method is hinged on the goodness the clustering algorithm used in superpixel segmentation and the experiments has shown that the clustering algorithm affects the effectiveness of proposed method. Thus, we give a strategy for selecting the segmentation parameter. The comparison experiments conducted on four real-world benchmark HSI data sets demonstrate that the proposed method provides more stable and effective classification performance than some state-of-the-art deep approaches with very limited training samples. The overall accuracies are 95.42% on Indian Pines, 98.48% on Kennedy Space center, 98.23% on Salinas Valley and 96.91% on Pavia University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data sets generated/analyzed during the current study are not publicly available. However, they will be made available from the corresponding author upon reasonable request.

Code availability

The code is available at: https://github.com/Ahu1234?tab=repositories.

References

  1. Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352. https://doi.org/10.1016/j.rse.2003.12.013

    Article  Google Scholar 

  2. Zhang N, Zhang X, Yang G, Zhu C, Huo L, Feng H (2018) Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens Environ 217:323–339. https://doi.org/10.1016/j.rse.2018.08.024

    Article  Google Scholar 

  3. Aslett Z, Taranik JV, Riley DN (2018) Mapping rock forming minerals at boundary canyon, death Valey National Park, California, using Aerial SEBASS thermal infrared hyperspectral image data. Int J Appl Earth Observ Geoinf 64:326–339. https://doi.org/10.1016/j.jag.2017.08.001

    Article  Google Scholar 

  4. Zhou Y, Peng J, Chen CP (2015) Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J Sel Topics Appl Earth Observ Remote Sens. 8(6):2351–2360. https://doi.org/10.1109/JSTARS.2014.2359965

    Article  Google Scholar 

  5. Liu J, Wu Z, Wei Z, Xiao L, Sun L (2013) Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J Sel Topics Appl Earth Observ Remote Sens 6(6):2462–2471. https://doi.org/10.1109/JSTARS.2013.2252150

    Article  Google Scholar 

  6. Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010) SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7(4):736–740. https://doi.org/10.1109/LGRS.2010.2047711

    Article  Google Scholar 

  7. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107. https://doi.org/10.1109/JSTARS.2014.2329330

    Article  Google Scholar 

  8. Li S, Song W, Fang L, Chen Y, Ghamisi P, Benediktsson JA (2019) Deep learning for hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens 57(9):6690–6709. https://doi.org/10.1109/TGRS.2019.2907932

    Article  Google Scholar 

  9. Paoletti ME, Haut JM, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging: a review. ISPRS J Photogrammetry Remote Sens 158:279–317. https://doi.org/10.1016/j.isprsjprs.2019.09.006

    Article  Google Scholar 

  10. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251. https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  11. Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sens 9(1):67. https://doi.org/10.3390/rs9010067

    Article  Google Scholar 

  12. He M, Li B, Chen H (2017) Multi-scale 3d deep convolutional neural network for hyperspectral image classification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3904–3908

  13. Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2020) Hybridsn: exploring 3-d-2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281. https://doi.org/10.1109/LGRS.2019.2918719

    Article  Google Scholar 

  14. Xu Q, Wang D, Luo B (2021) Faster multiscale capsule network with octave convolution for hyperspectral image classification. IEEE Geosci Remote Sens Lett 18(2):361–365. https://doi.org/10.1109/LGRS.2020.2970079

    Article  Google Scholar 

  15. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 770–778

  16. Zhong Z, Li J, Luo Z, Chapman M (2018) Spectral-spatial residual network for hyperspectral image classification: a 3-d deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858. https://doi.org/10.1109/TGRS.2017.2755542

    Article  Google Scholar 

  17. Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2019) Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):740–754. https://doi.org/10.1109/TGRS.2018.2860125

    Article  Google Scholar 

  18. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 2261–2269

  19. Paoletti ME, Haut JM, Plaza J, Plaza A (2018) Deep & dense convolutional neural network for hyperspectral image classification. Remote Sens 10(9):1454. https://doi.org/10.3390/rs10091454

    Article  Google Scholar 

  20. Zhang C, Li G, Du S (2019) Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 57(11):9201–9222. https://doi.org/10.1109/TGRS.2019.2925615

    Article  Google Scholar 

  21. Li R, Zheng S, Duan C, Yang Y, Wang X (2020) Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens 12(3):582. https://doi.org/10.3390/rs12030582

    Article  Google Scholar 

  22. Zhu M, Jiao L, Liu F, Yang S, Wang J (2021) Residual spectral-spatial attention network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 59(1):449–462. https://doi.org/10.1109/TGRS.2020.2994057

    Article  Google Scholar 

  23. Zhang Z, Liu D, Gao D, Shi G (2022) S\(^{3}\)net: spectral-spatial-semantic network for hyperspectral image classification with the multiway attention mechanism. IEEE Trans Geosci Remote Sens 60:1–17. https://doi.org/10.1109/TGRS.2021.3067356

    Article  Google Scholar 

  24. Mou L, Lu X, Li X, Zhu XX (2020) Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(12):8246–8257. https://doi.org/10.1109/TGRS.2020.2973363

    Article  Google Scholar 

  25. Hong D, Gao L, Yao J, Zhang B, Plaza A, Chanussot J (2021) Graph convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 59(7):5966–5978. https://doi.org/10.1109/TGRS.2020.3015157

    Article  Google Scholar 

  26. Wan S, Gong C, Zhong P, Du B, Zhang L, Yang J (2020) Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(5):3162–3177. https://doi.org/10.1109/TGRS.2019.2949180

    Article  Google Scholar 

  27. Agarwal S, Branson K, Belongie S (2006) Higher order learning with graphs. In: Proceedings of the 23rd international conference on Machine learning (ICML), pp. 17–24

  28. Wang Y, Zhu L, Qian X, Han J (2018) Joint hypergraph learning for tag-based image retrieval. IEEE Trans Image Process 27(9):4437–4451. https://doi.org/10.1109/TIP.2018.2837219

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang Z, Lin H, Zhao X, Ji R, Gao Y (2018) Inductive multi-hypergraph learning and its application on view-based 3d object classification. IEEE Trans Image Process 27(12):5957–5968. https://doi.org/10.1109/TIP.2018.2862625

    Article  MathSciNet  Google Scholar 

  30. Gao Y, Zhang Z, Lin H, Zhao X, Du S, Zou C (2022) Hypergraph learning: methods and practices. IEEE Trans Pattern Anal Mach Intell 44(5):2548–2566. https://doi.org/10.1109/TPAMI.2020.3039374

    Article  Google Scholar 

  31. Duan Y, Huang H, Wang T (2022) Semisupervised feature extraction of hyperspectral image using nonlinear geodesic sparse hypergraphs. IEEE Trans Geosci Remote Sens 60:1–15. https://doi.org/10.1109/TGRS.2021.3110855

    Article  Google Scholar 

  32. Huang S, Zhang H, Pižurica A (2022) Hybrid-hypergraph regularized multiview subspace clustering for hyperspectral images. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2021.3074184

    Article  Google Scholar 

  33. Cai Y, Zhang Z, Cai Z, Liu X, Jiang X (2022) Hypergraph-structured autoencoder for unsupervised and semisupervised classification of hyperspectral image. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3054868

    Article  Google Scholar 

  34. Feng Y, You H, Zhang Z, Ji R, Gao Y (2019) Hypergraph neural networks. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 3558–3565

  35. Ma Z, Jiang Z, Zhang H (2022) Hyperspectral image classification using feature fusion hypergraph convolution neural network. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2021.3123423

    Article  Google Scholar 

  36. Qin A, Shang Z, Tian J, Wang Y, Zhang T, Tang YY (2019) Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci Remote Sens Lett 16(2):241–245. https://doi.org/10.1109/LGRS.2018.2869563

    Article  Google Scholar 

  37. Ding Y, Feng J, Chong Y, Pan S, Sun X (2022) Adaptive sampling toward a dynamic graph convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–17. https://doi.org/10.1109/TGRS.2021.3132013

    Article  Google Scholar 

  38. Yang B, Cao F, Ye H (2022) A novel method for hyperspectral image classification: Deep network with adaptive graph structure integration. IEEE Trans Geosci Remote Sens 60:1–12. https://doi.org/10.1109/TGRS.2022.3150349

    Article  Google Scholar 

  39. Liu Q, Xiao L, Yang J, Wei Z (2021) Cnn-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans Geosci Remote Sens 59(10):8657–8671. https://doi.org/10.1109/TGRS.2020.3037361

    Article  Google Scholar 

  40. Dong Y, Liu Q, Du B, Zhang L (2022) Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans Image Process 31:1559–1572. https://doi.org/10.1109/TIP.2022.3144017

    Article  Google Scholar 

  41. He X, Chen Y, Ghamisi P (2022) Dual graph convolutional network for hyperspectral image classification with limited training samples. IEEE Trans Geosci Remote Sens 60:1–18. https://doi.org/10.1109/TGRS.2021.3061088

    Article  Google Scholar 

  42. Zhang H, Zou J, Zhang L (2022) Ems-gcn: an end-to-end mixhop superpixel-based graph convolutional network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2022.3163326

    Article  Google Scholar 

  43. Zuo X, Yu X, Liu B, Zhang P, Tan X (2022) Fsl-egnn: edge-labeling graph neural network for hyperspectral image few-shot classification. IEEE Trans Geosci Remote Sens 60:1–18. https://doi.org/10.1109/TGRS.2022.3165025

    Article  Google Scholar 

  44. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282. https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  45. Zhou D, Huang J, Schölkopf B (2007) Learning with hypergraphs: clustering, classification, and embedding. Proc Adv Neural Inf Process Syst 19:1601–1608

    Google Scholar 

  46. Ma X, Liu W, Li S, Tao D, Zhou Y (2019) Hypergraph \(p\)-Laplacian regularization for remotely sensed image recognition. IEEE Trans Geosci Remote Sens 57(3):1585–1595. https://doi.org/10.1109/TGRS.2018.2867570

    Article  Google Scholar 

  47. Fu S, Liu W, Zhou Y, Nie L (2019) Hplapgcn: hypergraph p-Laplacian graph convolutional networks. Neurocomputing 362:166–174. https://doi.org/10.1016/j.neucom.2019.06.068

    Article  Google Scholar 

  48. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. Proc Adv Neural Inf Process Syst 29:3844–3852

    Google Scholar 

  49. Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129–150. https://doi.org/10.1016/j.acha.2010.04.005

    Article  MathSciNet  MATH  Google Scholar 

  50. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Proc Int Conf Learn Represent. (ICLR), pp. 1–14

  51. Bai S, Zhang F, Torr PH (2021) Hypergraph convolution and hypergraph attention. Pattern Recognit 110:107637. https://doi.org/10.1016/j.patcog.2020.107637

    Article  Google Scholar 

  52. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Proc Int Conf Learn Represent. (ICLR)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments which have helped improve the paper. The research is supported by the National Natural Science Foundation of China (Nos. 61860206004, 72071001, 62076004), Natural Science Foundation of Anhui Province (Nos. 2008085MG226, 2008085QG334) and Natural Science Foundation for the Higher Education Institutions of Anhui Province (No. KJ2021A0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Xu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest in the research findings presented in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Lin, J., Jiang, B. et al. Hypergraph convolutional network for hyperspectral image classification. Neural Comput & Applic 35, 21863–21882 (2023). https://doi.org/10.1007/s00521-023-08935-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08935-w

Keywords