Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quasi-projective synchronization of discrete-time BAM neural networks by discrete inequality techniques

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we primarily concentrate on the quasi-projective synchronization of master–slave discrete-time BAM neural networks. Without using the LMI and matrix measure methods, by applying discrete inequalities and the Lyapunov sequences, constructing a discrete inequality group, then solving the inequality group, two novel criteria to guarantee the quasi-projective synchronization are obtained for the considered networks. The controllers designed, the approach, and the results in the paper are fully novel, which advance the development of the study of synchronization of discrete neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Kumar A, Das S, Singh S (2023) Rajeev, Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters. Chaos Solitons Fractals 166:112948. https://doi.org/10.1016/j.chaos.2022.112948

    Article  Google Scholar 

  2. Baluni S, Yadav VK, Das S (2022) Quasi projective synchronization of time varying delayed complex valued Cohen-Grossberg neural networks. Inf Sci 612:231–240. https://doi.org/10.1016/j.ins.2022.08.106

    Article  Google Scholar 

  3. Kumar A, Das S, Yadav VK (2021) Rajeev, Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms. Chaos Solitons Fractals 152:111323. https://doi.org/10.1016/j.chaos.2021.111323

    Article  Google Scholar 

  4. Wang Z, Jin X, Pan L, Feng Y, Cao J (2022) Quasi-synchronization of delayed stochastic multiplex networks via impulsive pinning control. IEEE Trans Syst Man Cybern Syst 52(9):5389–5397. https://doi.org/10.1109/TSMC.2021.3124158

    Article  Google Scholar 

  5. Ye R, Wang C, Shu A, Zhang H (2022) Quasi-synchronization and quasi-uniform synchronization of Caputo fractional variable-parameter neural networks with probabilistic time-varying delays. Symmetry 14:1035. https://doi.org/10.3390/sym14051035

    Article  ADS  Google Scholar 

  6. Yan H, Qiao Y, Duan L, Miao J (2022) New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays. Chaos Solitons Fractals 159:112121. https://doi.org/10.1016/j.chaos.2022.112121

    Article  MathSciNet  Google Scholar 

  7. Xu Y, Liu J, Li W (2022) Quasi-synchronization of fractional-order multi-layer networks with mismatched parameters via delay-dependent impulsive feedback control. Neural Netw 150:43–57. https://doi.org/10.1016/j.neunet.2022.02.023

    Article  PubMed  Google Scholar 

  8. Liu X, Li K, Song Q, Yang X (2021) Quasi-projective synchronization of distributed-order recurrent neural networks. Fractal Fract 5:260. https://doi.org/10.3390/fractalfract5040260

    Article  Google Scholar 

  9. Jin C, Shi S, Wang Z, He W, Jiang G-P (2021) Quasi-synchronization of heterogeneous Lur’e networks with impulsive feedback control. In: 2021 40th Chinese control conference (CCC). pp 4792-4797. https://doi.org/10.23919/CCC52363.2021.9549391.

  10. Xu Y, Huang Z, Rao H, Lu R, Huang T (2021) Quasi-synchronization for periodic neural networks with asynchronous target and constrained information. IEEE Trans Syst Man Cybern Syst 51(7):4379–4388. https://doi.org/10.1109/TSMC.2019.2930971

    Article  Google Scholar 

  11. Rao H, Xu Y, Peng H, Lu R, Su C-Y (2020) Quasi-synchronization of time delay Markovian jump neural networks with impulsive-driven transmission and fading channels. IEEE Trans Cybern 50(9):4121–4131. https://doi.org/10.1109/TCYB.2019.2941582

    Article  PubMed  Google Scholar 

  12. Zhou Y, Zhang H, Zeng Z (2021) Quasi-synchronization of delayed memristive neural networks via a Hybrid impulsive control. IEEE Trans Syst Man Cybern Syst 51(3):1954–1965. https://doi.org/10.1109/TSMC.2019.2911366

    Article  Google Scholar 

  13. Chen J, Chen B, Zeng Z (2021) Exponential quasi-synchronization of coupled delayed memristive neural networks via intermittent event-triggered control. Neural Netw 141:98–106. https://doi.org/10.1016/j.neunet.2021.01.013

    Article  PubMed  Google Scholar 

  14. Song X, Li X, Song S, Zhang Y, Ning Z (2021) Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional brownian motion. J Franklin Inst 358:2482–2499. https://doi.org/10.1016/j.jfranklin.2021.01.023

    Article  MathSciNet  Google Scholar 

  15. Cai J, Feng J, Wang J, Zhao Y (2020) Quasi-synchronization of neural networks with diffusion effects via intermittent control of regional division. Neurocomputing 409:146–156. https://doi.org/10.1016/j.neucom.2020.05.037

    Article  Google Scholar 

  16. Liu Z, Chen A, Cao J, Huang L (2003) Existence and global exponential stability of periodic solution for BAM neural networks with periodic coefficients and time-varying delays. IEEE Trans Circuits Syst 50:1162–1173

    Article  MathSciNet  Google Scholar 

  17. Liang J, Cao J (2004) Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays. Chaos Solitons Fractals 22:773–785

    Article  ADS  MathSciNet  Google Scholar 

  18. Ali MS, Yogamnigai J, Cao J (2017) Synchronization of master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control. Acta Math Sci 37:368–384

    Article  MathSciNet  CAS  Google Scholar 

  19. Wang X, Blum EK (1992) Discrete-time versus continuous-time models of neural networks. J Comput Syst Sci 45:1–19

    Article  MathSciNet  Google Scholar 

  20. Xiao Q, Huang T (2021) Quasi-synchronization of discrete-time inertial neural networks with parameter mismatches and delays. IEEE Trans Cybern 51(4):2290–2295. https://doi.org/10.1109/TCYB.2019.2937526

    Article  PubMed  Google Scholar 

  21. Ding S, Wang Z, Rong N (2021) Intermittent control for quasi-synchronization of delayed discrete-time neural networks. IEEE Trans Cybern 51(2):862–873. https://doi.org/10.1109/TCYB.2020.3004894

    Article  PubMed  Google Scholar 

  22. Rao H, Gan Y, Xu Y, Liu F (2018) Quasi-synchronization of discrete-time neural networks with randomly occurred uncertainty and parameter mismatch. Chin Autom Congress (CAC) 2018:374–378. https://doi.org/10.1109/CAC.2018.8623671

    Article  Google Scholar 

  23. Li J, Bin H, Huang Z (2017) Quasi-synchronization of discrete-time networks with parameter mismatches under impulsive control. Dyn Syst Control 6(4):158–163. https://doi.org/10.12677/dsc.2017.64020

    Article  CAS  Google Scholar 

  24. Li R, Cao J, Xue C, Manivannan R (2021) Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks. Appl Math Comput 395:125851. https://doi.org/10.1016/j.amc.2020.125851

    Article  MathSciNet  Google Scholar 

  25. Song Y, Zeng Z, Sun W et al (2020) Quasi-synchronization of stochastic memristor-based neural networks with mixed delays and parameter mismatches. Neural Comput Appl 32:4615–4628

    Article  Google Scholar 

  26. Dong Z, Wang X, Zhang X, Hu M, Dinh TN (2023) Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption. Nonlinear Anal Hybrid Syst 47:101291. https://doi.org/10.1016/j.nahs.2022.101291

    Article  MathSciNet  Google Scholar 

  27. Chen S, Li H-L, Bao H, Zhang L, Jiang H, Li Z (2022) Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks. Neurocomputing 511:290–298. https://doi.org/10.1016/j.neucom.2022.09.035

    Article  Google Scholar 

  28. Liu Y, Shen B, Zhang P (2022) Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters. Neural Netw 150:181–193. https://doi.org/10.1016/j.neunet.2022.02.028

    Article  PubMed  Google Scholar 

  29. Yang X, Wan X, Zunshui C, Cao J, Liu Y, Rutkowski L (2021) Synchronization of switched discrete-time neural networks via quantized output control with actuator fault. IEEE Trans Neural Netw Learn Syst 32(9):4191–4201. https://doi.org/10.1109/TNNLS.2020.3017171

    Article  MathSciNet  PubMed  Google Scholar 

  30. Li H, Fang J, Li X, Huang T (2020) Exponential synchronization of multiple impulsive discrete-time memristor-based neural networks with stochastic perturbations and time-varying delays. Neurocomputing 392:86–97. https://doi.org/10.1016/j.neucom.2020.01.110

    Article  Google Scholar 

  31. Gu Y, Wang H, Yu Y (2020) Synchronization for fractional-order discrete-time neural networks with time delays. Appl Math Comput 372:124995. https://doi.org/10.1016/j.amc.2019.124995

    Article  MathSciNet  Google Scholar 

  32. You X, Song Q, Zhao Z (2020) Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw 122:382–394. https://doi.org/10.1016/j.neunet.2019.11.004

    Article  PubMed  Google Scholar 

  33. Xiao Q, Huang T, Zeng Z (2019) Global exponential stability and synchronization for discrete-time inertial neural networks with time delays: a timescale approach. IEEE Trans Neural Netw Learn Syst 30(6):1854–1866. https://doi.org/10.1109/TNNLS.2018.2874982

    Article  MathSciNet  PubMed  Google Scholar 

  34. Fu Q, Cai J, Zhong S, Yu Y (2018) Exponential synchronization for discrete-time memristive neural networks with time-varying delays. In: IEEE international conference on communication systems (ICCS), vol. 2018, pp 423–426. https://doi.org/10.1109/ICCS.2018.8689219

  35. Lin D-H, Wu J, Li J-N, Cai J-P (2018) Asymptotic synchronization control of discrete-time delayed neural networks with a reuse mechanism under missing data and uncertainty. IEEE Access 6:52073–52081. https://doi.org/10.1109/ACCESS.2018.2870729

    Article  Google Scholar 

  36. Lin D-H, Wu J, Li J-N, Cai J-P (2017) Asymptotical synchronization control of discrete-time neural networks with time-varying delays and controller nonlinearity. In: 2017 32nd youth academic annual conference of Chinese association of automation (YAC), pp 998–1003. https://doi.org/10.1109/YAC.2017.7967556.

  37. Liu Y, Shen B, Zhang P (2022) Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters. Neural Netw 150:181–193

    Article  PubMed  Google Scholar 

  38. Wang P, Chen ZR, Li WX (2018) Graph-theoretic approach to exponential synchronization of discrete-time stochastic coupled systems with time-varying delay. Neurocomputing 275:659–666

    Article  Google Scholar 

  39. Li J, Bao WD, Li SB, Wen CL, Li LS (2016) Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data. Neurocomputing 207:700–707

    Article  Google Scholar 

  40. Liu X, Yu Y (2021) Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays. Neural Comput Appl 33:10503–10514

    Article  Google Scholar 

  41. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:4947–4960

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern Syst 18:49–60

    Article  MathSciNet  Google Scholar 

  43. Yang C, Liu Y, Huang L (2022) Finite-time and fixed-time stabilization of multiple memristive neural networks with nonlinear coupling. Cogn Neurodyn 16(6):1471–1483

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang S, Yu J, Hu C et al (2018) Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks. Neural Netw 104:104–113

    Article  PubMed  Google Scholar 

  45. Zhang Z, Zheng T, Yu S (2019) Finite-time anti-synchronization of neural networks with time-varying delays via inequality skills. Neurocomputing 356:60–68

    Article  Google Scholar 

  46. Yang C, Huang L, Cai Z (2019) Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays. Neural Netw 116:101–109

    Article  PubMed  Google Scholar 

  47. Yang G, Tong D, Chen Q, Zhou W (2023) Fixed-time synchronization and energy consumption for Kuramoto-oscillator networks with multilayer distributed control. IEEE Trans Circuits Syst II Express Briefs 70(4):1555–1559

    Google Scholar 

  48. Tong D, Ma B, Chen Q, Wei Y, Shi P (2023) Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks. IEEE Trans Circuits Syst II Express Briefs 70(6):2176–2180

    Google Scholar 

  49. Zhang Z, Cao J (2019) Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans Neural Netw Learn Syst 30(5):1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800

    Article  MathSciNet  PubMed  Google Scholar 

  50. Zhang Z, Cao J (2022) Finite-time synchronization for fuzzy inertial neural networks by maximum value approach. IEEE Trans Fuzzy Syst 30(5):1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953

    Article  Google Scholar 

  51. Chen T, Wang W, Wu Y (2022) Quasi-synchronization of fuzzy heterogeneous complex networks via intermittent discrete-time state observations control. IEEE Trans Fuzzy Syst 30(8):3085–3097. https://doi.org/10.1109/TFUZZ.2021.3103597

    Article  Google Scholar 

  52. Zhang Z, Chen M, Li A (2020) Further study on finite-time synchronization for delayed inertial neural networks via inequality skills. Neurocomputing 373:15–23

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers for their constructive comments which help us to improve the manuscript. This work is supported by Hubei University of Technology Doctoral Research Launch Fund (Grant number: XJ2022001501) and Science and technology project of Jiangxi education department (Grant number: GJJ191115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Yang or Zhengqiu Zhang.

Ethics declarations

Conflicts of interest

No conflict of interest exits in the submission of this paper which is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, Z. & Liao, H. Quasi-projective synchronization of discrete-time BAM neural networks by discrete inequality techniques. Neural Comput & Applic 36, 7327–7341 (2024). https://doi.org/10.1007/s00521-024-09462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09462-y

Keywords