Abstract
Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data that support this research are available on request from the authors. The data are not publicly available due to privacy or ethical restrictions.
Notes
One physician manually annotated the dataset.
We used such a zooming rate upper boundary to avoid missing important details of the esophagus area.
The images to be mirrored were chosen randomly. Apart from the number of images generated artificially, one-third accounts for rotation, one-third for mirroring, and the remaining stands for zoomed images.
References
Lagergren J, Lagergren P (2010) Oesophageal cancer. BMJ 341
Dent J (2011) Barrett’s esophagus: a historical perspective, an update on core practicalities and predictions on future evolutions of management. J Gastroenterol Hepatol 26:11–30
Sharma P, Bergman JJGHM, Goda K, Kato M et al (2016) Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in barrett’s esophagus using narrow-band imaging. Gastroenterology 150(3):591–598
Phoa KN, Pouw RE, Bisschops R, Pech O, Ragunath K, Weusten BLAM et al (2016) Multimodality endoscopic eradication for neoplastic Barrett oesophagus: results of an European Multicentre Study (EURO-II). Gut 65(4):555–562
Shaheen NJ, Sharma P, Overhold BF et al (2009) Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med 360(22):2277–2288
Johnson MH, Eastone JA, Horwhat JD et al (2005) Cryoablation of Barrett’s esophagus: a pilot study. Gastrointest Endosc 62:842–848
Ghatwary N, Zolgharni M, Ye X (2019) Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg 14(4):611–621
Ghatwary N, Ye X, Zolgharni M (2019) Esophageal abnormality detection using densenet based faster R-CNN with gabor features. IEEE Access 7:84374–84385
van der Putten J, de Groof J, Struyvenberg M, Boers T, Fockens K, Curvers W, Schoon E, Bergman J, van der Sommen F, de With PHN (2020) Multi-stage domain-specific pretraining for improved detection and localization of Barrett’s neoplasia: A comprehensive clinically validated study. Artif Intell Med 107:101914
Ebigbo A, Mendel R, Probst A, Manzeneder J, de Souza LA, Papa JP, Palm C, Messmann H (2019) Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut 68(7):1143–1145. https://doi.org/10.1136/gutjnl-2018-317573
Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, Souza LA Jr, Papa J, Palm C, Messmann H (2020) Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut 69(4):615–616. https://doi.org/10.1136/gutjnl-2019-319460
Souza LA Jr, Mendel R, Strasser S, Ebigbo A, Probst A, Messmann H, Papa JP, Palm C (2021) Convolutional neural networks for the evaluation of cancer in Barrett’s esophagus: explainable AI to lighten up the black-box. Comput Biol Med 135:104578
Souza LA Jr, Passos LA, Mendel R, Ebigbo A, Probst A, Messmann H, Palm C, Papa JP (2020) Assisting Barrett’s esophagus identification using endoscopic data augmentation based on generative adversarial networks. Comput Biol Med 126:104029
Souza Jr, LA, Passos LA, Mendel R, Ebigbo A, Probst A, Messmann H, Palm C, Papa JP (2021) Fine-tuning generative adversarial networks using metaheuristics. In: Bildverarbeitung Für die Medizin (BVM), pp 205–210
Souza Jr., LA, Ebigbo A, Probst A, Messmann H, Papa JP, Mendel R, Palm C (2018) Barrett’s esophagus identification using color co-occurrence matrices. In: Conference on graphics, patterns and images (SIBGRAPI), pp 166–173 . https://doi.org/10.1109/SIBGRAPI.2018.00028
Souza LA Jr, Afonso LCS, Ebigbo A, Probst A, Messmann H, Mendel R, Hook C, Palm C, Papa JP (2019) Learning visual representations with optimum-path forest and its applications to Barrett’s esophagus and adenocarcinoma diagnosis. Neural Comput Appl 32:759–775
Souza Jr. LA, Hook C, Papa JP, Palm (2017) Barrett’s esophagus analysis using SURF features. In: Bildverarbeitung Für die Medizin (BVM), pp 141–146
Mendel R, Ebigbo A, Probst A, Messmann H, Palm C (2017) Barrett’s esophagus analysis using convolutional neural networks. In: Bildverarbeitung Für die Medizin (BVM) pp 80–85
Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, Ishihara S (2019) Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 89(1):25–32
Hassan AR, Haque MA (2015) Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput Biol Med 122:341–353
Souza LA Jr, Palm C, Mendel R, Hook C, Ebigbo A, Probst A, Messmann H, Weber S, Papa JP (2018) A survey on Barrett’s esophagus analysis using machine learning. Comput Biol Med 96:203–213. https://doi.org/10.1016/j.compbiomed.2018.03.014
Souza Jr. LA, Afonso LCS, Palm C, Papa JP (2017) Barrett’s esophagus identification using optimum-path forest. In: Conference on graphics, patterns and images (SIBGRAPI), pp 308–314
Passos LA, Souza LA Jr, Mendel R, Ebigbo A, Probst A, Messmann H, Palm C, Papa JP (2019) Barrett’s esophagus analysis using infinity restricted Boltzmann machines. J Vis Commun Image R 59:475–485. https://doi.org/10.1016/j.jvcir.2019.01.043
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Papa JP, Falcão AX, Suzuki CTN (2009) Supervised pattern classification based on optimum-path forest. Int J Imaging Syst Technol 19(2):120–131. https://doi.org/10.1002/ima.20188
Papa JP, Falcão AX, Albuquerque VHC, Tavares JMRS (2012) Efficient supervised optimum-path forest classification for large datasets. Pattern Recognit 45(1):512–520. https://doi.org/10.1016/j.patcog.2011.07.013
Peng X, Gao X, Li X (2018) On better training the infinite restricted Boltzmann machines. Mach Learn 107(6):943–968. https://doi.org/10.1007/s10994-018-5696-2
de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, Zinger S, Pouw RE, Coron E, Baldaque-Silva F, Pech O, Weusten B, Meining A, Neuhaus H, Bisschops R, Dent J, Schoon EJ, de With PH, Bergman JJ (2020) Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology 158(4):915–9294. https://doi.org/10.1053/j.gastro.2019.11.030
van der Putten J, Struyvenberg M, de Groof J, Scheeve T, Curvers W, Schoon E, Bergman JJGHM, de With PHN, van der Sommen F (2020) Deep principal dimension encoding for the classification of early neoplasia in Barrett’s esophagus with volumetric laser endomicroscopy. Comput Med Imagimg Graph 80:101701. https://doi.org/10.1016/j.compmedimag.2020.101701
van der Putten J, de Groof J, Struyvenberg M, Boers T, Fockens K, Curvers W, Schoon E, Bergman J, van der Sommen F, de With PHN (2020) Multi-stage domain-specific pretraining for improved detection and localization of Barrett’s neoplasia: a comprehensive clinically validated study. Artif Intell Med 107:101914. https://doi.org/10.1016/j.artmed.2020.101914
Xie Y, Gao G, Chen XA (2019) Outlining the design space of explainable intelligent systems for medical diagnosis. CoRR arXiv:1902.06019
Alcantarilla P, Nuevo J, Bartoli A (2013) Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British machine vision conference (BMVC), pp 13–11311
Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR arXiv:1512.03385
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 . https://doi.org/10.1109/CVPR.2016.90
Liu S, Deng W (2015) Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pp 730–734 . https://doi.org/10.1109/ACPR.2015.7486599
Huang G, Liu Z, Weinberger KQ (2016) Densely connected convolutional networks. CoRR arxiv:1608.06993
van der Sommen F, Zinger S, Curvers WL et al (2016) Computer-aided detection of early neoplastic lesions in Barret’s esophagus. Endoscopy 48(7):617–624
Riel SV, van der Sommen F, Zinger S, Schoon EJ, de With PHN (2018) Automatic detection of early esophageal cancer with CNNs using transfer learning. In: IEEE international conference on image processing (ICIP), pp 1383–1387
Ohmori M, Ishihara R, Aoyama K, Nakagawa K, Iwagami H, Matsuura N, Shichijo S, Yamamoto K, Nagaike K, Nakahara M, Inoue T, Aoi K, Okada H, Tada T (2019) Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc 91(2):301–3091
Hou W, Wang L, Cai S, Lin Z, Yu R, Qin J (2021) Early neoplasia identification in Barrett’s esophagus via attentive hierarchical aggregation and self-distillation. Med Image Anal 72:102092
Gehrung M, Crispin-Ortuzar M, Berman A, O’Donovan M, Fitzgerald R, Markowetz F (2021) Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat Med 27(5):833–841
Acknowledgements
The authors are greateful to Capes/Alexander von Humboldt Foundation Grant Number BEX 0581-16-0, CNPq Grants 306166/2014-3 and 307066/2017-7, FAPESP Grants 2013/07375-0, 2014/12236-1, 2016/19403-6, 2017/04847-9, and 2019/08605-5.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Souza Jr., L.A., Pacheco, A.G.C., Passos, L.A. et al. DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus. Neural Comput & Applic 36, 10445–10459 (2024). https://doi.org/10.1007/s00521-024-09615-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-024-09615-z