Abstract
This study presents a user-centric incremental learning model based on the proposed output selection strategy (OSS) and multiview body direction estimation for dynamic personal identification systems on mobile devices. First, the OSS filters primitive results generated from the classifier, so that the refined information can be used to update the learning model. Second, the robustness of the model is enhanced by using different views of faces as system input, which allows the learning model to adapt itself when either of facial views is not available. In addition, the body direction estimation method is proposed for estimating multiple views of a person by matching templates of human shapes and skin colors. An experiment on 168,000 test samples (20 classes with three facial views) is conducted to evaluate the proposed system. The experimental results show that the proposed method improves accuracy by more than 40 % compared to baseline, and correspondingly confirms the effectiveness of the proposed idea.










Similar content being viewed by others
References
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Turk, M.: A random walk through Eigenspace. IEICE Trans. Inform. Syst. E84d(12), 1586–1595 (2001)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Wu, J.Y., An, G.Y., Ruan, Q.Q.: Independent Gabor analysis of discriminant features fusion for face recognition. IEEE Signal Process. Lett. 16(1–3), 97–100 (2009)
Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)
Valenzano, D.R., Mennucci, A., Tartarelli, G., et al.: Shape analysis of female facial attractiveness. Vision Res. 46(8–9), 1282–1291 (2006)
Lina, Takahashi, T., Ide, I., et al.: Incremental unsupervised-learning of appearance manifold with view-dependent covariance matrix for face recognition from video sequences. IEICE Trans. Inform. Syst. E92D(4), 642–652 (2009)
Lina, S., Takahashi, T., Ide, I., et al.: Construction of appearance manifold with embedded view-dependent covariance matrix for 3D object recognition. IEICE Trans. Inform. Syst. E91D(4), 1091–1100 (2008)
Borenstein, E., Ullman, S.: Combined top-down/bottom-up segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2109–2125 (2008)
Chen, X., Yang, Q., Liao H., et al.: Real-time face pose estimation in video sequence, 2nd International Workshop on Education Technology and Computer Science, ETCS 2010. pp. 24–27 (2010)
Choi, Y.H., Tak, Y.S., Rho, S., et al.: Skin feature extraction and processing model for statistical skin age estimation. Multimed. Tools Appl. 64(2), 227–247 (2013)
Kidera, T., Ozawa, S., Abe, S.: An incremental learning algorithm of ensemble classifier systems, IEEE International Conference on Neural Networks—Conference Proceedings. pp. 3421–3427 (2006)
Ozawa, S., Toh, S.L., Abe, S., et al.: Incremental learning of feature space and classifier for face recognition. Neural Networks 18(5–6), 575–584 (2005)
Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)
Swets, D.L., Weng, J.J.: Using discriminant Eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 831–836 (1996)
Kirby, M., Sirovich, L.: Application of the karhunen–loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)
Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)
Jeong, D.H., Ziemkiewicz, C., Fisher, B., et al.: IPCA: an interactive system for PAC-based visual analytics. Comput. Graphics Forum 28(3), 767–774 (2009)
Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener. Comput. Syst. 29(1), 84–106 (2013)
Paul Viola, M.J.: Robust real-time object detection, 2nd International Workshop on Statistical and Computational Theories of Vision—Modeling, Learning, Computing, and Sampling (2001)
Paul, A., Jiang, Y.C., Wang J.F., et al.: Parallel reconfigurable computing-based mapping algorithm for motion estimation in advanced video coding. ACM Trans. Embed. Comput. Syst. 11, 40(1–18) (2012)
Paul, A., Wu, J., Yang, J.F., et al.: Gradient-based edge detection for motion estimation in h.264/avc. IET Image Proc. 5(4), 323–327 (2011)
Tsai, A.C., Paul, A., Wang, J.C., et al.: Intensity gradient technique for efficient intra-prediction in h.264/avc. IEEE Trans. Circuits Syst. Video Technol. 18(5), 694–698 (2008)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction, Proceedings—International Conference on Pattern Recognition. pp. 28–31 (2004)
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)
Kim, K., Chalidabhongse, T.H., Harwood, D., et al.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)
Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimed. 1(3), 264–277 (1999)
Rastislav Lukac K.N.P.: Color image processing methods and applications, 1st edn. CRC Press, Boca Raton (2006)
Qiong, L., Guang-zheng, P.: A robust skin color based face detection algorithm, pp. 525–528 (2010)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsai, HC., Chen, BW., Bharanitharan, K. et al. User-centric incremental learning model of dynamic personal identification for mobile devices. Multimedia Systems 21, 121–130 (2015). https://doi.org/10.1007/s00530-013-0328-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-013-0328-y