Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pooled time series representation for mitosis event recognition

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new feature representation for mitotic event detection in time-lapse phase contrast microscopy image sequences of stem cell populations. First, an imaging model-based microscopy image segmentation method is implemented for mitotic candidate extraction. Then, a new feature representation framework based on time series pooling is proposed for sequential events. At last, a support vector machine classifier is utilized for mitotic cell modeling and detection. Different from other feature representations including bag-of-visual-words when using identical underlying feature descriptors, this method can take advantage of temporal relations among frames, the idea is to keep track of how descriptor values are changing over time and summarize them to represent appearance in the cell sequence. The comparison experiments demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strandmark, P., Ulen, J., Kahl, F.: Hep-2 staining pattern classification, In: International Conference on Pattern Recognition, pp. 33–36 (2012)

  2. Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 13(3), 322–329 (2009)

    Article  Google Scholar 

  3. Thibault, G., Angulo, J.: Efficient statistical/morphological cell texture characterization and classification. In: International Conference on Pattern Recognition, pp. 2440–2443 (2012)

  4. Li, K., Yin, J., Lu, Z., Kong, X.: Multiclass boosting svm using different texture features in hep-2 cell staining pattern classification. In: International Conference on Pattern Recognition, pp. 170–173 (2012)

  5. Siva, P., Brodland, G.W., Clausi, D.: Automated detection of mitosis in embryonic tissues. In: Canadian Conference on Computer and Robot Vision, pp. 97–104 (2007)

  6. Li, K., Miller, E.D., Chen, M., Kanade, T.: Computer vision tracking of stemness. In: IEEE International Symposium on Biomedical Imaging: from Nano To Macro, Paris, France, pp. 847–850 (2008)

  7. Viola, P., Jones, M.J.: Robust real-time object detection. In: International Workshop on Statistical and Computational Theories of Vision—Modeling, Learning, Computing, and Sampling, p. 87 (2001)

  8. Li, S., Wakefield, J., Noble, J.A.: Automated segmentation and alignment of mitotic nuclei for kymograph visualisation. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro, Isbi 2011, March 30–April 2, 2011, pp. 622–625. Chicago, Illinois, USA (2011)

  9. Gallardo, G.M., Yang, F., Sonka, M.: Mitotic cell recognition with hidden Markov models. Proc. SPIE Int. Soc. Opt. Eng 5367, 661–668 (2004)

    Google Scholar 

  10. Liang, L., Zhou, X., Li, F., Wong, S.T.C., Huckins, J., King, R.W.: Mitosis cell identification with conditional random fields. In: Proceedings of Life Science Systems and Application Workshop, pp. 9–12 (2008)

  11. Zhou, X., Li, F., Yan, J., Wong, S.T.C.: A novel cell segmentation method and cell phase identification using Markov model. IEEE Trans. Inf. Technol. Biomed. 13(2), 152–157 (2009)

    Article  Google Scholar 

  12. Liu, A.A., Li, K., Kanade, T.: Mitosis sequence detection using hidden conditional random fields. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro, Rotterdam, the Netherlands, 14-17 April, pp. 580–583 (2010)

  13. El-Labban, T.Y.A., Zisserman, A.: Dynamic time warping for automated cell cycle labelling, In: Microscopic Image Analysis with Applications in Biology, pp. 580–583 (2011)

  14. Huh, S., Ker, D.F., Bise, R., Chen, M., Kanade, T.: Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans. Med. Imaging 30(3), 586 (2011)

    Article  Google Scholar 

  15. Huh, S., Chen, M.: Detection of mitosis within a stem cell population of high cell confluence in phase-contrast microscopy images. In: Computer Vision and Pattern Recognition, pp. 1033–1040 (2011)

  16. Liu, A.A., Li, K., Kanade, T.: A semi-Markov model for mitosis segmentation in time-lapse phase contrast microscopy image sequences of stem cell populations. IEEE Trans. Med. Imaging 31(2), 359–369 (2012)

    Article  Google Scholar 

  17. Su, Y., Yu, J., Liu, A., Gao, Z., Hao, T., Yang, Z.: Cell type-independent mitosis event detection via hidden-state conditional neural fields. In: IEEE International Symposium on Biomedical Imaging, pp. 222–225 (2014)

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  20. Vapnik, V.N.: The nature of statistical learning theory. IEEE Trans. Neural Netw. 8(6), 1564–1564 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Nie.

Additional information

Fully documented templates are available in the elsarticle package on CTAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Wang, S., Nie, W. et al. Pooled time series representation for mitosis event recognition. Multimedia Systems 25, 103–108 (2019). https://doi.org/10.1007/s00530-017-0572-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0572-7

Keywords