Abstract
Users often exhibit different intents when interacting with recommender systems, guiding their engagement across various behavior categories like clicks, ratings, and purchases. However, most current approaches overlook this diversity of user behaviors, making it difficult to capture the varied structural linkages occurring across multiple interaction types. Additionally, prior multi-behavior recommendation research frequently neglects modeling the underlying intents motivating different activities. Consequently, the potential of leveraging behavioral data to enhance recommendation performance for target outcomes remains underutilized. Exploring behavior intent is critical for recommender systems, but poses significant challenges due to three key factors: (1) capturing the diverse intents behind multiple interaction behaviors, (2) modeling interdependencies among various user-item interactions, and (3) integrating multi-behavior signals with heterogeneous user behavior collaboration characteristics. To address these difficulties, we propose a novel model called Multi-Behavior Knowledge Graph Intent Network (MBKGIN). MBKGIN utilizes a knowledge graph to understand the intents behind behaviors, overcoming limitations of previous methods. Specifically, MBKGIN constructs multi-behavior dependencies using a multi-head attention mechanism and incorporates intent information from the knowledge graph. Experiments on real-world datasets demonstrate MBKGIN’s effective utilization of multi-behavior data.
Similar content being viewed by others
Data availability
Not applicable.
Code availability
Not applicable.
References
Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., Wang, Z.: Knowledge-aware graph neural networks with label smoothness regularization for recommender systems. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’19, pp. 968–977. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3330836
Altenburger, K.M., Ho, D.E.: Is yelp actually cleaning up the restaurant industry? a re-analysis on the relative usefulness of consumer reviews. In: The World Wide Web Conference. WWW ’19, pp. 2543–2550. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3308558.3313683
Gao, C., Huang, C., Yu, Y., Wang, H., Li, Y., Jin, D.: Privacy-preserving cross-domain location recommendation. In: Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3(1) (2019). https://doi.org/10.1145/3314398
Gu, Y., Ding, Z., Wang, S., Yin, D.: Hierarchical user profiling for e-commerce recommender systems. In: Proceedings of the 13th International Conference on Web Search and Data Mining. WSDM ’20, pp. 223–231. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3336191.3371827
Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., Chawla, N.V.: Online purchase prediction via multi-scale modeling of behavior dynamics. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’19, pp. 2613–2622. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3330790
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263
Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010). https://doi.org/10.1109/ICDM.2010.127
Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., Shah, H.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. DLRS 2016, pp. 7–10. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2988450.2988454
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for CTR prediction. CoRR. arXiv:1703.04247 (2017)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp. 173–182. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017). https://doi.org/10.1145/3038912.3052569
Loni, B., Pagano, R., Larson, M., Hanjalic, A.: Bayesian personalized ranking with multi-channel user feedback. In: Proceedings of the 10th ACM Conference on Recommender Systems. RecSys ’16, pp. 361–364. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2959100.2959163
Qiu, H., Liu, Y., Guo, G., Sun, Z., Zhang, J., Nguyen, H.T.: Bprh: Bayesian personalized ranking for heterogeneous implicit feedback. Inf. Sci. 453, 80–98 (2018). https://doi.org/10.1016/j.ins.2018.04.027
Chen, C., Zhang, M., Zhang, Y., Ma, W., Liu, Y., Ma, S.: Efficient heterogeneous collaborative filtering without negative sampling for recommendation. Proc. AAAI Conf. Artif. Intell. 34(01), 19–26 (2020). https://doi.org/10.1609/aaai.v34i01.5329
Gao, C., He, X., Gan, D., Chen, X., Feng, F., Li, Y., Chua, T.-S., Yao, L., Song, Y., Jin, D.: Learning to recommend with multiple cascading behaviors. IEEE Trans. Knowl. Data Eng. 33(6), 2588–2601 (2021). https://doi.org/10.1109/TKDE.2019.2958808
Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’08, pp. 650–658. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1401890.1401969
Tang, L., Long, B., Chen, B.-C., Agarwal, D.: An empirical study on recommendation with multiple types of feedback. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16, pp. 283–292. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939690
Xia, L., Huang, C., Xu, Y., Dai, P., Lu, M., Bo, L.: Multi-behavior enhanced recommendation with cross-interaction collaborative relation modeling. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1931–1936 (2021). https://doi.org/10.1109/ICDE51399.2021.00179
Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., Pei, J., Bo, L.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. Proc. AAAI Conf. Artifi. Intell. 35(5), 4486–4493 (2021). https://doi.org/10.1609/aaai.v35i5.16576
Wei, W., Huang, C., Xia, L., Xu, Y., Zhao, J., Yin, D.: Contrastive meta learning with behavior multiplicity for recommendation. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. WSDM ’22, pp. 1120–1128. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3488560.3498527
Xia, L., Xu, Y., Huang, C., Dai, P., Bo, L.: Graph meta network for multi-behavior recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’21, pp. 757–766. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462972
Gu, S., Wang, X., Shi, C., Xiao, D.: Self-supervised graph neural networks for multi-behavior recommendation. In: International Joint Conference on Artificial Intelligence (IJCAI) (2022)
Zhang, C., Chen, R., Zhao, X., Han, Q., Li, L.: Denoising and prompt-tuning for multi-behavior recommendation. In: Proceedings of the ACM Web Conference 2023. WWW ’23, pp. 1355–1363. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3543507.3583513
Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’19, pp. 793–803. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3330961
Chami, I., Ying, R., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. Adv. Neural. Inf. Process. Syst. 32, 4869–4880 (2019)
Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’18, pp. 1416–1424. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219947
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30, 1024–1034 (2017)
Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide Web Conference. WWW ’19, pp. 2022–2032. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3308558.3313562
van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv:1706.02263 (2017)
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’18, pp. 974–983. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219890
Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR’19, pp. 165–174. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3331184.3331267
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’20, pp. 639–648. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3397271.3401063
Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks for social recommendation. In: The World Wide Web Conference. WWW ’19, pp. 417–426. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3308558.3313488
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: Kgat: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’19, pp. 950–958. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3330989
Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K., Tang, J.: Gcc: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’20, pp. 1150–1160. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3394486.3403168
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. CoRR. arXiv:2010.13902 (2020)
Chen, M., Huang, C., Xia, L., Wei, W., Xu, Y., Luo, R.: Heterogeneous graph contrastive learning for recommendation. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. WSDM ’23, pp. 544–552. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3539597.3570484
Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) The Semantic Web, pp. 593–607. Springer, Cham (2018)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ. Accessed 28 Feb 2022
Cui, Z., Chen, H., Cui, L., Liu, S., Liu, X., Xu, G., Yin, H.: Reinforced kgs reasoning for explainable sequential recommendation. World Wide Web 25(2), 631–654 (2022)
Zhang, W., Mao, J., Cao, Y., Xu, C.: Multiplex graph neural networks for multi-behavior recommendation. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management. CIKM ’20, pp. 2313–2316. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3340531.3412119
Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., Zha, H.: Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In: Proceedings of The Web Conference 2020. WWW ’20, pp. 3056–3062. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366423.3380077
Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., Zha, H.: Incorporating link prediction into multi-relational item graph modeling for session-based recommendation. IEEE Trans. Knowl. Data Eng. 35(3), 2683–2696 (2023). https://doi.org/10.1109/TKDE.2021.3111436
Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., Liu, Y., Ma, S.: Graph heterogeneous multi-relational recommendation. Proc. AAAI Conf. Artif. Intell. 35(5), 3958–3966 (2021). https://doi.org/10.1609/aaai.v35i5.16515
Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph convolutional networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’20, pp. 659–668. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3397271.3401072
Yang, H., Chen, H., Li, L., Yu, P.S., Xu, G.: Hyper meta-path contrastive learning for multi-behavior recommendation. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 787–796 (2021). https://doi.org/10.1109/ICDM51629.2021.00090
Yu, B., Zhang, R., Chen, W., Fang, J.: Graph neural network based model for multi-behavior session-based recommendation. GeoInformatica 26(2), 429–447 (2022)
Huang, J., Zhao, W.X., Dou, H., Wen, J.-R., Chang, E.Y.: Improving sequential recommendation with knowledge-enhanced memory networks. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’18, pp. 505–514. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3209978.3210017
Wang, H., Zhang, F., Xie, X., Guo, M.: Dkn: deep knowledge-aware network for news recommendation. In: Proceedings of the 2018 World Wide Web Conference. WWW ’18, pp. 1835–1844. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.3186175
Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16, pp. 353–362. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939673
Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.-S.: Explainable reasoning over knowledge graphs for recommendation. Proc. AAAI Conf. Artif. Intell. 33(01), 5329–5336 (2019). https://doi.org/10.1609/aaai.v33i01.33015329
Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommendation fusion over heterogeneous information networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’17, pp. 635–644. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3097983.3098063
Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., Guo, M.: Ripplenet: propagating user preferences on the knowledge graph for recommender systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. CIKM ’18, pp. 417–426. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3269206.3271739
Qu, Y., Bai, T., Zhang, W., Nie, J., Tang, J.: An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation. In: Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. DLP-KDD ’19. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3326937.3341257
Zhao, J., Zhou, Z., Guan, Z., Zhao, W., Ning, W., Qiu, G., He, X.: Intentgc: a scalable graph convolution framework fusing heterogeneous information for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’19, pp. 2347–2357. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3330686
Wang, X., Huang, T., Wang, D., Yuan, Y., Liu, Z., He, X., Chua, T.-S.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021. WWW ’21, pp. 878–887. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3442381.3450133
Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web. WWW ’15 Companion, pp. 111–112. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2740908.2742726
Acknowledgements
This work was supported by the National Natural Science Foundation of China (nos. 72271024, 71871019).
Author information
Authors and Affiliations
Contributions
XP: conceptualization, methodology, data curation, software, validation, writing—original draft, writing—review. MG: conceptualization, writing—review and editing, supervision, funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Communicated by T. Yao.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pan, X., Gan, M. Multi-behavior recommendation based on intent learning. Multimedia Systems 29, 3655–3668 (2023). https://doi.org/10.1007/s00530-023-01191-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-023-01191-x