Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Size effect on the dynamic analysis of electrostatically actuated micro-actuators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a new analytical model for electrostatically actuated micro-actuators to explore the size effect by using the “symmetric stress” gradient elasticity theory. A gradient coefficient (material length scale parameter) is introduced to represent the size-dependent characteristics of micro-beams. The nonlinearities, which associated with the mid-plane stretching force and the electrostatical force, also are considered in this model. By employing Galerkin method, the nonlinear partial differential governing equation is decoupled into a set of nonlinear ordinary differential equations which are then solved using Runge–Kutta method. Numerical results show that, compared with the classical theory, the stiffness of the micro-beam based on the “symmetric stress” gradient elasticity theory is greater. The effects of size effect, geometric nonlinearity, initial gap, beam length and beam height on nonlinear dynamic behavior are studied. It is found that the effects of size effect become more significant when the voltage is higher, the initial gap, the beam length and the beam height are smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    Article  MATH  Google Scholar 

  • Aifantis EC (1996) Higher order gradients and size effects. Size-scale effects in the failure mechanisms of materials and structures. E&FN Spon, London, pp 231–242

  • Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  • Akgoz B, Civalek O (2013) Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48:863–873

    Article  MathSciNet  MATH  Google Scholar 

  • Akgoz B, Civalek O (2014a) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 20(4):606–616

    Article  MathSciNet  Google Scholar 

  • Akgoz B, Civalek O (2014b) A new trigonometric beam model for buckling of strain gradient microbeams. Int J Mech Sci 81:88–94

    Article  Google Scholar 

  • Akgoz B, Civalek O (2015) A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226:2277–2294

    Article  MathSciNet  MATH  Google Scholar 

  • Altan BS, Aifantis EC (1997) On some aspects in the special theory of gradient elasticity. J Mech Behav Mater 8:231–282

    Article  Google Scholar 

  • Altan BS, Evensen H, Aifantis EC (1996) Longitudinal vibrations of a beam; a gradient elasticity approach. Mech Res Commun 23:35–40

    Article  MATH  Google Scholar 

  • Bochobza-Degani O, Elata D, Nemirovsky Y (2003) Micromirror device with reversibly adjustable properties. IEEE Photon Technol Lett 15:733–735

    Article  Google Scholar 

  • Cheng J, Zhe J, Wu X (2004) Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators. J Micromech Microeng 14:57–68

    Article  Google Scholar 

  • Cosserat E, Cosserat F (1909) Theory of deformable bodies. Scientific Library, A. Hermann and Sons, Paris

    MATH  Google Scholar 

  • De SK, Aluru NR (2004) Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. J Microelectromech Syst 13:737–758

    Article  Google Scholar 

  • Eringen AC (1972) Non-local polar elastic continua. Int J Eng Sci 10:1–16

    Article  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Eringen AC, Suhubi ES (1964) Nonlinear theory of simple microelastic solid—I. Int J Eng Sci 2:189–203

    Article  MathSciNet  MATH  Google Scholar 

  • Hung ES, Senturia SD (1999) Extending the travel range of the analog-tuned electrostatic actuators. J Microelectromech Syst 8:497–505

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S (2011) Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech 218:161–174

    Article  MATH  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36:1875–1884

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity: I and II. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, Physical Sciences, 67: 17–44

  • Koochi A, Farrokhabadi A, Abadyan M (2015) Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section. Microsyst Technol 21:355–364

    Article  Google Scholar 

  • Kouzeli M, Mortensen A (2002) Size dependent strengthening in particle reinforced aluminium. Acta Mater 50:39–51

    Article  Google Scholar 

  • Lakes RS (1983) Size effects and micromechanics of a porous solid. J Mater Sci 18:2572–2580

    Article  Google Scholar 

  • Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22:55–63

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Legtenberg R, Gilbert J, Senturia SD (1997) Electrostatic curved electrode actuators. J Microelectromech Syst 6:257–265

    Article  Google Scholar 

  • Ling Z (2000) Deformation behavior and microstructure effect in 2124Al/SuCp composite. J. Comp Mater 34:101–115

    Google Scholar 

  • Lloyd DJ (1994) Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev 39:1–23

    Article  Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness in silver single crystal. J Mater Res 10:853–863

    Article  Google Scholar 

  • McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1067

    Article  Google Scholar 

  • Miandoab EM et al (2014) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys E 63:223–228

    Article  Google Scholar 

  • Miandoab EM, Yousefi-Koma A, Pishkenari HN (2015) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst Technol 21:457–464

    Article  MATH  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Nix WD (1989) Mechanical properties of tin films. Metall Trans 20A:2217–2245

    Article  Google Scholar 

  • Peng JS, Yang L, Luo GB, Yang J (2014a) Nonlinear electro-dynamic analysis of micro-actuators: effect of material nonlinearity. Appl Math Model 38:2781–2790

    Article  MathSciNet  Google Scholar 

  • Peng JS, Yang L, Yang J (2014b) Dynamic pull-in instability of a micro-actuator made from nonlinear elasticity materials. Smart Mater Struct 23:065023–065031

    Article  Google Scholar 

  • Sari G (2013) Non-linear vibrations of a microbeam resting on an elastic foundation. Arab J Sci Eng 38:1191–1199

    Article  MathSciNet  Google Scholar 

  • Shojaeian M, Tadi Beni Y, Ataei H (2016) Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut 118:62–71

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Toupin RA (1964) Theory of elasticity with couple stresses. Arch Ration Mech Anal 17:85–112

    Article  MATH  Google Scholar 

  • Trimmer WSN, Gabriel KJ (1987) Design considerations for a practical electrostatic micro-motor. Sens Actuators A 11:189–206

    Article  Google Scholar 

  • Xie WC, Lee HP, Lim SP (2003) Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn 31:243–256

    Article  MATH  Google Scholar 

  • Yang JFC, Lakes RS (1981) Transient study of couple stress effects in compact bone: torsion. J Biomed Eng 103:275–279

    Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Yang J, Hu YJ, Kitipornchai S (2012) Electro-dynamic behavior of an electrically actuated micro-beam: effects of initial curvature and nonlinear deformation. Comput Struct 96–97:25–33

    Article  Google Scholar 

  • Yin L, Qian Q, Wang L (2011) Size effect on the static behavior of electrostatically actuated microbeams. Acta Mech Sin 27(3):445–451

    Article  MATH  Google Scholar 

  • Zhang WM, Meng G (2005) Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS. Sens Actuators, A 119:291–299

    Article  Google Scholar 

  • Zhu HT, Zbib HM, Aifantis EC (1997) Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech 121:165–176

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J.S., Yang, L. & Yang, J. Size effect on the dynamic analysis of electrostatically actuated micro-actuators. Microsyst Technol 23, 1247–1254 (2017). https://doi.org/10.1007/s00542-015-2788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2788-9

Keywords