Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Infrared Behaviour of the Pure Yang–Mills Green Functions

  • Review
  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We review the infrared properties of the pure Yang–Mills correlators and discuss recent results concerning the two classes of low-momentum solutions for them reported in literature, i.e. decoupling and scaling solutions. We will mainly focus on the Landau gauge and pay special attention to the results inferred from the analysis of the Dyson–Schwinger equations of the theory and from “quenched” lattice QCD. The results obtained from properly interplaying both approaches are strongly emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  2. Cornwall J.M.: Quark confinement and vortices in massive gauge invariant QCD. Nucl.Phys. B 157, 392 (1979)

    Article  ADS  Google Scholar 

  3. Greensite J.: An introduction to the confinement problem. Lect. Notes Phys. 821, 1–211 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chetyrkin, K.G., Retey, A.: Three loop three linear vertices and four loop similar to MOM β functions in massless QCD. arXiv:hep-ph/0007088 (2000)

  5. Sheikholeslami B., Wohlert R.: Improved continuum limit lattice action for QCD with Wilson fermions. Nucl. Phys. B 259, 572 (1985)

    Article  ADS  Google Scholar 

  6. Iwasaki Y., Yoshie T.: Renormalization group improved action for SU(3) lattice gauge theory and the string tension. Phys. Lett. B 143, 449 (1984)

    Article  ADS  Google Scholar 

  7. Luscher M., Weisz P.: On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  8. Luscher M., Weisz P.: Computation of the action for on-shell improved lattice gauge theories at weak coupling. Phys. Lett. B 158, 250 (1985)

    Article  ADS  Google Scholar 

  9. Bowman P.O., Heller U.M., Leinweber D.B., Parappilly M.B., Williams A.G.: Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004)

    Article  ADS  Google Scholar 

  10. Bowman P.O., Heller U.M., Leinweber D.B., Parappilly M.B., Williams A.G. et al.: Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)

    Article  ADS  Google Scholar 

  11. Parappilly M.B., Bowman P.O., Heller U.M., Leinweber D.B., Williams A.G. et al.: Effects of dynamical sea-quarks on quark and gluon propagators. AIP Conf. Proc. 842, 237–239 (2006)

    Article  ADS  Google Scholar 

  12. Silva, P.J., Oliveira, O.: Unquenching the Landau gauge lattice propagators and the Gribov problem. PoS LATTICE2010:287 (2010)

    Google Scholar 

  13. Dyson F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Schwinger J.S.: On the Green’s functions of quantized fields 1. Proc. Natl. Acad. Sci. 37, 452–455 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  15. Alkofer R., von Smekal L.: The infrared behavior of QCD Green’s functions: confinement dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rept. 353, 281 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Mandelstam S.: Approximation Scheme for QCD. Phys. Rev. D 20, 3223 (1979)

    Article  ADS  Google Scholar 

  17. Mandelstam S.: General introduction to confinement. Phys. Rept. 67, 109 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  18. Brown N., Pennington M.R.: Studies of confinement: how the gluon propagates. Phys. Rev. D 39, 2723 (1989)

    Article  ADS  Google Scholar 

  19. Aguilar A.C., Papavassiliou J.: Gluon mass generation in the PT-BFM scheme. JHEP 0612, 012 (2006)

    Article  ADS  Google Scholar 

  20. Aguilar A.C., Binosi D., Papavassiliou J.: Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations. Phys. Rev. D 78, 025010 (2008)

    Article  ADS  Google Scholar 

  21. Cucchieri, A., Mendes, T.: What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices. PoS LAT2007:297 (2007)

    Google Scholar 

  22. Bogolubsky, I.L., Ilgenfritz, E.M., Muller-Preussker, M., Sternbeck, A.: The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes. PoS LAT2007:290 (2007)

    Google Scholar 

  23. Sternbeck A., Ilgenfritz E.-M., Muller-Preussker M., Schiller A.: The Gluon and ghost propagator and the influence of Gribov copies. Nucl. Phys. Proc. Suppl. 140, 653–655 (2005)

    Article  ADS  Google Scholar 

  24. Boucaud, P., Leroy, J.P., Le Yaouanc, A., Lokhov, A.Y., Micheli, J., et al.: The infrared behaviour of the pure Yang–Mills green functions. arXiv:hep-ph/0507104, 205

  25. Sternbeck, A., von Smekal, L., Leinweber, D.B., Williams, A.G.: Comparing SU(2) to SU(3) gluodynamics on large lattices. PoS LAT2007:340 (2007)

    Google Scholar 

  26. Boucaud P., Leroy J.-P., Le Yaouanc A., Micheli J., Pène O. et al.: IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation. JHEP 0806, 012 (2008)

    Article  ADS  Google Scholar 

  27. Boucaud P., Leroy J.P., Le Yaouanc A., Micheli J., Pène O. et al.: On the IR behaviour of the Landau-gauge ghost propagator. JHEP 0806, 099 (2008)

    Article  ADS  Google Scholar 

  28. Fischer C.S., Maas A., Pawlowski J.M.: On the infrared behavior of Landau gauge Yang–Mills theory. Ann. Phys. 324, 2408–2437 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Aguilar A.C., Binosi D., Papavassiliou J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)

    Article  ADS  Google Scholar 

  30. Fischer C.S., Pawlowski J.M.: Uniqueness of infrared asymptotics in Landau gauge Yang–Mills theory. Phys. Rev. D 75, 025012 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  31. Watson P., Reinhardt H.: The Coulomb gauge ghost Dyson-Schwinger equation. Phys. Rev. D 82, 125010 (2010)

    Article  ADS  Google Scholar 

  32. Epple D., Reinhardt H., Schleifenbaum W., Szczepaniak A.P.: Subcritical solution of the Yang–Mills Schroedinger equation in the Coulomb gauge. Phys. Rev. D 77, 085007 (2008)

    Article  ADS  Google Scholar 

  33. Leder M., Pawlowski J.M., Reinhardt H., Weber A.: Hamiltonian flow in Coulomb gauge Yang–Mills theory. Phys. Rev. D 83, 025010 (2011)

    Article  ADS  Google Scholar 

  34. Cornwall J.M.: Positivity issues for the pinch-technique gluon propagator and their resolution. Phys. Rev. D 80, 096001 (2009)

    Article  ADS  Google Scholar 

  35. Boucaud Ph., Gomez M.E., Leroy J.P., Le Yaouanc A., Micheli J. et al.: The low-momentum ghost dressing function and the gluon mass. Phys. Rev. D 82, 054007 (2010)

    Article  ADS  Google Scholar 

  36. Gribov V.N.: Quantization of nonabelian gauge theories. Nucl. Phys. B 139, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  37. Dell’Antonio G., Zwanziger D.: Every gauge orbit passes inside the Gribov horizon. Commun. Math. Phys. 138, 291–299 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Zwanziger D.: Action from the Gribov horizon. Nucl. Phys. B 321, 591 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  39. Zwanziger D.: Renormalizability of the critical limit of lattice gauge theory by BRS invariance. Nucl. Phys. B 399, 477–513 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  40. Kondo K.-I.: Kugo-Ojima color confinement criterion and Gribov-Zwanziger horizon condition. Phys. Lett. B 678, 322–330 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  41. Dudal D., Sobreiro R.F., Sorella S.P., Verschelde H.: The Gribov parameter and the dimension two gluon condensate in Euclidean Yang–Mills theories in the Landau gauge. Phys. Rev. D 72, 014016 (2005)

    Article  ADS  Google Scholar 

  42. Dudal D., Sorella S.P., Vandersickel N., Verschelde H.: New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach. Phys. Rev. D 77, 071501 (2008)

    Article  ADS  Google Scholar 

  43. Dudal D., Gracey J.A., Paolo Sorella S., Vandersickel N., Verschelde H.: A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results. Phys. Rev. D 78, 065047 (2008)

    Article  ADS  Google Scholar 

  44. Zwanziger D.: Local and renormalizable action from the Gribov horizon. Nucl. Phys. B 323, 513–544 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  45. Dudal D., Oliveira O., Vandersickel N.: Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate \({\langle A^{2}\rangle }\) in the Landau gauge. Phys. Rev. D 81, 074505 (2010)

    Article  ADS  Google Scholar 

  46. Dudal, D., Sorella, S.P., Vandersickel, N.: The dynamical origin of the refinement of the Gribov-Zwanziger theory. arXiv:1105.3371 (2011)

  47. Ellwanger U., Hirsch M., Weber A.: Flow equations for the relevant part of the pure Yang–Mills action. Z. Phys. C 69, 687–698 (1996)

    Article  MathSciNet  Google Scholar 

  48. Ellwanger U., Hirsch M., Weber A.: The heavy quark potential from Wilson’s exact renormalization group. Eur. Phys. J. C 1, 563–578 (1998)

    Article  ADS  Google Scholar 

  49. Fischer C.S., Gies H.: Renormalization flow of Yang–Mills propagators. JHEP 10, 048 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  50. Pawlowski J.M., Litim D.F., Nedelko S., von Smekal L.: Infrared behaviour and fixed points in Landau gauge QCD. Phys. Rev. Lett. 93, 152002 (2004)

    Article  ADS  Google Scholar 

  51. Pawlowski J.M.: Aspects of the functional renormalisation group. Ann. Phys. 322, 2831–2915 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Fischer C.S., Pawlowski J.M.: Uniqueness of infrared asymptotics in Landau gauge Yang- Mills theory II. Phys. Rev. D 80, 025023 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  53. Frasca M.: Infrared gluon and ghost propagators. Phys. Lett. B 670, 73–77 (2008)

    Article  ADS  Google Scholar 

  54. Frasca M.: Yang–Mills propagators and QCD. Nucl. Phys. Proc. Suppl. 186, 260–263 (2009)

    Article  ADS  Google Scholar 

  55. Frasca M.: Mapping a massless scalar field theory on a Yang–Mills theory: classical case. Mod. Phys. Lett. A 24, 2425–2432 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Tissier M., Wschebor N.: Infrared propagators of Yang–Mills theory from perturbation theory. Phys. Rev. D 82, 101701 (2010)

    Article  ADS  Google Scholar 

  57. Tissier, M., Wschebor, N.: An infrared safe perturbative approach to Yang–Mills correlators. arXiv:1105.2475 (2011)

  58. Zwanziger D.: Non-perturbative Faddeev-Popov formula and infrared limit of QCD. Phys. Rev. D 69, 016002 (2004)

    Article  ADS  Google Scholar 

  59. Zwanziger D.: Nonperturbative Landau gauge and infrared critical exponents in QCD. Phys. Rev. D 65, 094039 (2002)

    Article  ADS  Google Scholar 

  60. Kugo, T., Ojima, I.: Prog. Theor. Phys. Supp. pp. 1–130 (1979)

  61. Kugo, T.: The universal renormalization factors Z(1)/Z(3) and color confinement condition in nonAbelian gauge theory. In: International Symposium on BRS Symmetry, pp. 107–119, Kyoto (1995)

  62. Boucaud P., Leroy J.P., Le Yaouanc A., Micheli J., Pène O. et al.: Gribov’s horizon and the ghost dressing function. Phys. Rev. D 80, 094501 (2009)

    Article  ADS  Google Scholar 

  63. Greensite J., Olejnik S.: Coulomb energy, vortices, and confinement. Phys. Rev. D 67, 094503 (2003)

    Article  ADS  Google Scholar 

  64. Greensite J., Olejnik S., Zwanziger D.: Center vortices and the Gribov horizon. JHEP 0505, 070 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  65. Pennington M.R.: Strong coupling continuum QCD. AIP Conf. Proc. 1343, 63–68 (2011)

    Article  ADS  Google Scholar 

  66. Lerche C., von Smekal L.: On the infrared exponent for gluon and ghost propagation in Landau gauge QCD. Phys. Rev. D 65, 125006 (2002)

    Article  ADS  Google Scholar 

  67. Chetyrkin K.G.: Four-loop renormalization of QCD: full set of renormalization constants and anomalous dimensions. Nucl. Phys. B 710, 499–510 (2005)

    Article  ADS  MATH  Google Scholar 

  68. Bloch J.C.R.: Two-loop improved truncation of the ghost-gluon Dyson-Schwinger equations: multiplicatively renormalizable propagators and nonperturbative running coupling. Few-Body Syst. 33, 111–152 (2003)

    Article  ADS  Google Scholar 

  69. Schwinger J.S.: Gauge invariance and mass. Phys. Rev. 125, 397–398 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Cornwall J.M.: Dynamical mass generation in continuum QCD. Phys. Rev. D 26, 1453 (1982)

    Article  ADS  Google Scholar 

  71. Aguilar A.C., Papavassiliou J.: Power-law running of the effective gluon mass. Eur. Phys. J. A 35, 189–205 (2008)

    Article  ADS  Google Scholar 

  72. Lavelle M.: Gauge invariant effective gluon mass from the operator product expansion. Phys. Rev. D 44, 26–28 (1991)

    Article  ADS  Google Scholar 

  73. Boucaud P., De Soto F., Leroy J.P., Le Yaouanc A., Micheli J., Pène O., Rodríguez-Quintero J.: Ghost-gluon running coupling, power corrections and the determination of \({\Lambda_{\overline{\rm MS}}}\) . Phys. Rev. D 79, 014508 (2009)

    Article  ADS  Google Scholar 

  74. Aguilar, A.C., Binosi, D., Papavassiliou, J.: Infrared finite effective charge of QCD. PoS LC2008:050 (2008)

    Google Scholar 

  75. Taylor J.C.: Ward identities and charge renormalization of the Yang–Mills field. Nucl. Phys. B 33, 436–444 (1971)

    Article  ADS  Google Scholar 

  76. Itzykson C., Zuber J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  77. Boucaud P., Leroy J.P., Le Yaouanc A., Lokhov A.Y., Micheli J. et al.: Divergent IR gluon propagator from Ward-Slavnov-Taylor identities?. JHEP 0703, 076 (2007)

    Article  ADS  Google Scholar 

  78. Davydychev A.I., Osland P., Tarasov O.V.: Three gluon vertex in arbitrary gauge and dimension. Phys. Rev. D 54, 4087–4113 (1996)

    Article  ADS  Google Scholar 

  79. Ball J.S., Chiu T.-W.: Analytic properties of the vertex function in gauge theories 2. Phys. Rev. D 22, 2550 (1980)

    Article  ADS  Google Scholar 

  80. Boucaud P., Leroy J.P., Le Yaouanc A., Lokhov A.Y., Micheli J. et al.: Constraints on the IR behaviour of gluon and ghost propagator from Ward-Slavnov-Taylor identities. Eur. Phys. J. A 31, 750–753 (2007)

    Article  ADS  Google Scholar 

  81. Alkofer R., Huber M.Q., Schwenzer K.: Infrared singularities in Landau gauge Yang–Mills theory. Phys. Rev. D 81, 105010 (2010)

    Article  ADS  Google Scholar 

  82. Zwanziger D.: Vanishing of zero momentum lattice gluon propagator and color confinement. Nucl. Phys. B 364, 127–161 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  83. Mandula J.E., Ogilvie M.: The gluon is massive: a lattice calculation of the gluon propagator in the Landau gauge. Phys. Lett. B 185, 127–132 (1987)

    Article  ADS  Google Scholar 

  84. Gupta R., Guralnik G., Kilcup G., Patel A., Sharpe S.R. et al.: The hadron spectrum on a 183 ×  42 lattice. Phys. Rev. D 36, 2813 (1987)

    Article  ADS  Google Scholar 

  85. Bernard C.W., Parrinello C., Soni A.: The Gluon propagator in momentum space. Nucl. Phys. Proc. Suppl. 30, 535–538 (1993)

    Article  ADS  Google Scholar 

  86. Suman H., Schilling K.: First lattice study of ghost propagators in SU(2) and SU(3) gauge theories. Phys. Lett. B 373, 314–318 (1996)

    Article  ADS  Google Scholar 

  87. Cucchieri A.: Gribov copies in the minimal Landau gauge: the influence on gluon and ghost propagators. Nucl. Phys. B 508, 353–370 (1997)

    ADS  Google Scholar 

  88. Nakajima H., Furui Sadataka: Test of the Kugo–Ojima confinement criterion in the lattice Landau gauge. Nucl. Phys. Proc. Suppl. 83, 521–523 (2000)

    ADS  Google Scholar 

  89. Cucchieri, A., Mendes, T.: Numerical test of the Gribov-Zwanziger scenario in Landau gauge. PoS QCD-TNT09:026 (2009)

  90. Sternbeck, A., Ilgenfritz, E.M., Muller-Preussker, M., Schiller, A.: Studying the infrared region in Landau gauge QCD. PoS LAT2005:333 (2006)

    Google Scholar 

  91. Bonnet F.D.R., Bowman P.O., Leinweber D.B., Williams A.G.: Infrared behavior of the gluon propagator on a large volume lattice. Phys. Rev. D 62, 051501 (2000)

    Article  ADS  Google Scholar 

  92. Bonnet F.D.R., Bowman P.O., Leinweber D.B., Williams A.G., Zanotti J.M.: Infinite volume and continuum limits of the Landau gauge gluon propagator. Phys. Rev. D 64, 034501 (2001)

    Article  ADS  Google Scholar 

  93. Sternbeck A., Ilgenfritz E.-M., Mueller-Preussker M., Schiller A.: Towards the infrared limit in SU(3) Landau gauge lattice gluodynamics. Phys. Rev. D 72, 014507 (2005)

    Article  ADS  Google Scholar 

  94. Boucaud P., Leroy J.P., Le Yaouanc A., Lokhov A.Y., Micheli J. et al.: Asymptotic behavior of the ghost propagator in SU3 lattice gauge theory. Phys. Rev. D 72, 114503 (2005)

    Article  ADS  Google Scholar 

  95. Silva P.J., Oliveira O.: Infrared gluon propagator from lattice QCD: results from large asymmetric lattices. Phys. Rev. D 74, 034513 (2006)

    Article  ADS  Google Scholar 

  96. Silva P.J., Oliveira O.: Studying the infrared behaviour of gluon and ghost propagators using large asymmetric lattices. AIP Conf. Proc. 892, 220–222 (2007)

    Article  ADS  Google Scholar 

  97. Sternbeck, A., Ilgenfritz, E.-M., Muller-Preussker, M., Schiller, A., Bogolubsky, I.L.: Lattice study of the infrared behavior of QCD Green’s functions in Landau gauge. PoS LAT2006:076 (2006)

    Google Scholar 

  98. Oliveira O., Silva P.J.: Infrared gluon and ghost propagators exponents from lattice QCD. Eur. Phys. J. C 62, 525–534 (2009)

    Article  ADS  Google Scholar 

  99. Oliveira O., Silva P.J.: Does the lattice zero momentum gluon propagator for pure gauge SU(3) Yang–Mills theory vanish in the infinite volume limit?. Phys. Rev. D 79, 031501 (2009)

    Article  ADS  Google Scholar 

  100. Oliveira, O., Silva, P.J.: The lattice infrared Landau gauge gluon propagator: the infinite volume limit. PoS LAT2009:226 (2009)

    Google Scholar 

  101. Oliveira O., Silva, P.J.: The lattice infrared Landau gauge gluon propagator: from finite volume to the infinite volume. PoS QCD-TNT09:033 (2009)

  102. Iritani T., Suganuma H., Iida H.: Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD: Yukawa-type gluon propagator and anomalous gluon spectral function. Phys. Rev. D 80, 114505 (2009)

    Article  ADS  Google Scholar 

  103. Suganuma, H., Iritani, T., Yamamoto, A., Iida, H.: Lattice QCD analysis for gluons. PoS QCD-TNT09:044 (2009)

  104. Suganuma, H., Iritani, T., Yamamoto, A., Iida, H.: Lattice QCD study for gluon propagator and gluon spectral function. PoS LAT2010:289 (2010)

    Google Scholar 

  105. Bogolubsky I.L., Ilgenfritz E.M., Muller-Preussker M., Sternbeck A.: Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared. Phys. Lett. B 676, 69–73 (2009)

    Article  ADS  Google Scholar 

  106. Halzen F., Krein G.I., Natale A.A.: Relating the QCD pomeron to an effective gluon mass. Phys. Rev. D 47, 295–298 (1993)

    Article  ADS  Google Scholar 

  107. Oliveira O., Bicudo P.: Running gluon mass from Landau gauge lattice QCD propagator. J. Phys. G G38, 045003 (2011)

    Article  ADS  Google Scholar 

  108. von Smekal L., Alkofer R., Hauck A.: The Infrared behavior of gluon and ghost propagators in Landau gauge QCD. Phys. Rev. Lett. 79, 3591–3594 (1997)

    Article  ADS  Google Scholar 

  109. Sternbeck A., Ilgenfritz E.-M., Muller-Preussker M., Schiller A.: Landau gauge ghost and gluon propagators and the Faddeev-Popov operator spectrum. Nucl. Phys. Proc. Suppl. 153, 185–190 (2006)

    Article  ADS  Google Scholar 

  110. Cucchieri A., Mendes T., Mihara A.: Numerical study of the ghost-gluon vertex in Landau gauge. JHEP 0412, 012 (2004)

    Article  ADS  Google Scholar 

  111. Cucchieri A., Maas A., Mendes T.: Three-point vertices in Landau-gauge Yang–Mills theory. Phys. Rev. D 77, 094510 (2008)

    Article  ADS  Google Scholar 

  112. Alles B., Henty D., Panagopoulos H., Parrinello C., Pittori C. et al.: α s from the nonperturbatively renormalised lattice three gluon vertex. Nucl. Phys. B 502, 325–342 (1997)

    Article  ADS  Google Scholar 

  113. Boucaud P., Leroy J.P., Micheli J., Pène O., Roiesnel C.: Lattice calculation of α s in momentum scheme. JHEP 9810, 017 (1998)

    Article  ADS  Google Scholar 

  114. Boucaud P., De Soto F., Le Yaouanc A., Leroy J.P., Micheli J. et al.: The strong coupling constant at small momentum as an instanton detector. JHEP 0304, 005 (2003)

    Article  ADS  Google Scholar 

  115. Bowman P.O. et al.: Scaling behavior and positivity violation of the gluon propagator in full QCD. Phys. Rev. D 76, 094505 (2007)

    Article  ADS  Google Scholar 

  116. Cucchieri A., Mendes T.: Landau-gauge propagators in Yang–Mills theories at β = 0: massive solution versus conformal scaling. Phys. Rev. D 81, 016005 (2010)

    Article  ADS  Google Scholar 

  117. Becirevic D. et al.: Asymptotic behaviour of the gluon propagator from lattice QCD. Phys. Rev. D 60, 094509 (1999)

    Article  ADS  Google Scholar 

  118. Becirevic D. et al.: Asymptotic scaling of the gluon propagator on the lattice. Phys. Rev. D 61, 114508 (2000)

    Article  ADS  Google Scholar 

  119. de Soto F., Roiesnel C.: On the reduction of hypercubic lattice artifacts. JHEP 0709, 007 (2007)

    Article  Google Scholar 

  120. Fischer C.S., Axel M., Pawlowski J.M., von Smekal L.: Large volume behaviour of Yang–Mills propagators. Ann. Phys. 322, 2916–2944 (2007)

    Article  ADS  MATH  Google Scholar 

  121. Cucchieri A., Mendes T.: Constraints on the IR behavior of the gluon propagator in Yang–Mills theories. Phys. Rev. Lett. 100, 241601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  122. Cucchieri A., Mendes T.: Infrared behavior of gluon and ghost propagators from asymmetric lattices. Phys. Rev. D 73, 071502 (2006)

    Article  ADS  Google Scholar 

  123. Oliveira, O., Silva, P.J., Ilgenfritz, E.M., Sternbeck, A.: The Gluon propagator from large asymmetric lattices. PoS LAT2007:323 (2007)

    Google Scholar 

  124. Bowman P.O., Heller U.M., Leinweber D.B., Parappilly M.B., Williams A.G.: QCD propagators: some results from the lattice. Nucl. Phys. Proc. Suppl. 161, 27–33 (2006)

    Article  ADS  Google Scholar 

  125. Giusti L., Paciello M.L., Parrinello C., Petrarca S., Taglienti B.: Problems on lattice gauge fixing. Int. J. Mod. Phys. A 16, 3487–3534 (2001)

    Article  ADS  MATH  Google Scholar 

  126. Bogolubsky I.L., Bornyakov V.G., Burgio G., Ilgenfritz E.M., Muller-Preussker M. et al.: Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator. Phys. Rev. D 77, 014504 (2008)

    Article  ADS  Google Scholar 

  127. Maas A.: Constructing non-perturbative gauges using correlation functions. Phys. Lett. B 689, 107–111 (2010)

    Article  ADS  Google Scholar 

  128. Bogolubsky, I.L., Ilgenfritz, E.-M., Muller-Preussker, M., Sternbeck, A.: The Landau gauge gluon propagator in 4D SU(2) lattice gauge theory revisited: Gribov copies and scaling properties. PoS LAT2009:237 (2009)

    Google Scholar 

  129. Bornyakov V.G., Mitrjushkin V.K., Muller-Preussker M.: SU(2) lattice gluon propagator: continuum limit, finite-volume effects and infrared mass scale m IR . Phys. Rev. D 81, 054503 (2010)

    Article  ADS  Google Scholar 

  130. Lokhov, A.Y., Pène, O., Roiesnel, C.: Scaling properties of the probability distribution of lattice Gribov copies. arXiv:hep-lat/0511049 (2005)

  131. Christ N.H., Lee T.D.: Operator ordering and Feynman rules in gauge theories. Phys. Rev. D 22, 939 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  132. Zwanziger D.: No confinement without Coulomb confinement. Phys. Rev. Lett. 90, 102001 (2003)

    Article  ADS  Google Scholar 

  133. Cucchieri, A., Mendes, T.: Gauge fixing and gluon propagator in lambda gauges (1998)

  134. Maas, A., Cucchieri, A., Mendes, T.: Propagators in Yang–Mills theory for different gauges. PoS CONFINEMENT8:181 (2008)

    Google Scholar 

  135. Iritani T., Suganuma H.: Instantaneous interquark potential in generalized Landau gauge in SU(3) lattice QCD: a linkage between the Landau and the Coulomb gauges. Phys. Rev. D 83, 054502 (2011)

    Article  ADS  Google Scholar 

  136. Maas, A., Mendes, T., Olejnik, S.: Yang–Mills Theory in lambda-gauges. arXiv:1108.2621 (2011)

  137. Burgio G., Quandt M., Reinhardt H.: BRST symmetry versus horizon condition in Yang–Mills theory. Phys. Rev. D 81, 074502 (2010)

    Article  ADS  Google Scholar 

  138. Quandt, M., Burgio, G., Chimchinda, S., Reinhardt, H.: Coulomb gauge ghost propagator and the Coulomb potential. PoS CONFINEMENT8:066 (2008)

    Google Scholar 

  139. Langfeld K., Moyaerts L.: Propagators in Coulomb gauge from SU(2) lattice gauge theory. Phys. Rev. D 70, 074507 (2004)

    Article  ADS  Google Scholar 

  140. Cucchieri A., Zwanziger D.: Numerical study of gluon propagator and confinement scenario in minimal Coulomb gauge. Phys. Rev. D 65, 014001 (2001)

    Article  ADS  Google Scholar 

  141. Quandt, M., Burgio, G., Chimchinda, S., Reinhardt, H.: Coulomb gauge Green functions and Gribov copies in SU(2) lattice gauge theory. PoS LAT2007:325 (2007)

    Google Scholar 

  142. Burgio, G., Quandt, M., Reinhardt, H.: The gluon propagator in Coulomb gauge from the lattice. PoS CONFINEMENT8:051 (2008)

    Google Scholar 

  143. Burgio, G., Quandt, M., Schrock, M., Reinhardt, H.: Propagators in lattice Coulomb gauge and confinement mechanisms. PoS, LATTICE2010:272 (2010)

  144. Burgio G., Quandt M., Reinhardt H.: Coulomb gauge gluon propagator and the Gribov formula. Phys. Rev. Lett. 102, 032002 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  145. Nakagawa Y., Nakamura A., Saito T., Toki T.: The Coulomb gauge confinement scenario and the color-dependent quark potentials in lattice QCD simulations. Mod. Phys. Lett. A 23, 2348–2351 (2008)

    Article  ADS  Google Scholar 

  146. Nakagawa Y., Nakamura A., Saito T., Toki H.: The volume dependence of the long-range two-body potentials in various color channels by lattice QCD. Phys. Rev. D 77, 034015 (2008)

    Article  ADS  Google Scholar 

  147. Nakagawa Y., Voigt A., Ilgenfritz E.-M., Muller-Preussker M., Nakamura A. et al.: Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang–Mills theory. Phys. Rev. D 79, 114504 (2009)

    Article  ADS  Google Scholar 

  148. Greensite, J., Olejnik, S.: Gluon chains and the quark-antiquark potential. PoS LAT2009:240 (2009)

    Google Scholar 

  149. Greensite, J.: Aspects of confinement in Coulomb gauge. PoS QCD-TNT09:017 (2009)

  150. Greensite J., Olejnik S.: Constituent gluon content of the static quark-antiquark state in Coulomb gauge. Phys. Rev. D 79, 114501 (2009)

    Article  ADS  Google Scholar 

  151. Nakagawa, Y., Nakamura, A., Saito, T., Toki, H.: Coulomb gauge gluon propagator on anisotropic lattices. PoS LAT2009:230 (2009)

    Google Scholar 

  152. Nakagawa Y., Nakamura A., Saito T., Toki H.: Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang–Mills theory. Phys. Rev. D 81, 054509 (2010)

    Article  ADS  Google Scholar 

  153. Nakagawa Y., Nakamura A., Saito T., Toki H.: Scaling study of the gluon propagator in Coulomb gauge QCD on isotropic and anisotropic lattices. Phys. Rev. D 83, 114503 (2011)

    Article  ADS  Google Scholar 

  154. Rodriguez-Quintero J.: A brief comment on the similarities of the IR solutions for the ghost propagator DSE in Landau and Coulomb gauges. Phys. Rev. D 83, 097501 (2011)

    Article  ADS  Google Scholar 

  155. Boucaud P., Le Yaouanc A., Leroy J.P., Micheli J., Pène O. et al.: Consistent OPE description of gluon two point and three point Green function?. Phys. Lett. B 493, 315–324 (2000)

    Article  ADS  Google Scholar 

  156. Boucaud P., Le Yaouanc A., Leroy J.P., Micheli J., Pène O., Rodríguez-Quintero J.: Testing Landau gauge OPE on the lattice with a \({\langle A^{2}\rangle}\) condensate. Phys. Rev. D 63, 114003 (2001)

    Article  ADS  Google Scholar 

  157. De Soto F., Rodriguez-Quintero J.: Remarks on the determination of the Landau gauge OPE for the asymmetric three gluon vertex. Phys. Rev. D 64, 114003 (2001)

    Article  ADS  Google Scholar 

  158. Boucaud P., Leroy J.P., Le Yaouanc A., Lokhov A.Y., Micheli J. et al.: Non-perturbative power corrections to ghost and gluon propagators. JHEP 0601, 037 (2006)

    Article  ADS  Google Scholar 

  159. Shifman M.A., Vainshtein A.I., Zakharov V.I.(1979) QCD and resonance physics. Sum rules. Nucl. Phys. B 147, 385, 448, 519 (1979)

  160. Lavelle M., Oleszczuk M.: The operator product expansion of the QCD propagators. Mod. Phys. Lett. A 7, 3617–3630 (1992)

    Article  ADS  Google Scholar 

  161. Martinelli G., Sachrajda C.T.: On the difficulty of computing higher twist corrections. Nucl. Phys. B 478, 660–686 (1996)

    Article  ADS  Google Scholar 

  162. Pène, O., Blossier, B., Boucaud, Ph., Le Yaouanc, A., Leroy, J.P. et al.: Vacuum expectation value of \({\langle A^{2}\rangle}\) from LQCD. PoS FACESQCD:010 (2011)

  163. Chetyrkin K.G., Maier A.: Wilson expansion of QCD propagators at three loops: operators of dimension two and three. JHEP 1001, 092 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  164. Boucaud P., de Soto F., Leroy J.P., Le Yaouanc A., Micheli J. et al.: Quark propagator and vertex: systematic corrections of hypercubic artifacts from lattice simulations. Phys. Lett. B 575, 256–267 (2003)

    Article  ADS  MATH  Google Scholar 

  165. Boucaud, Ph., Dudal, D., Leroy, J.P., Pene, O., Rodriguez-Quintero, J.: On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem. arXiv:1109.3803 (2011)

  166. Aguilar A.C., Papavassiliou J.: Chiral symmetry breaking with lattice propagators. Phys. Rev. D 83, 014013 (2011)

    Article  ADS  Google Scholar 

  167. Fischer C.S.: Infrared properties of QCD from Dyson-Schwinger equations. J. Phys. G G32, R253–R291 (2006)

    Article  ADS  Google Scholar 

  168. Burgio G., Quandt M., Reinhardt H.: Coulomb gauge gluon propagator and the Gribov formula. Phys. Rev. Lett. 102, 032002 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  169. Watson P., Reinhardt H.: Propagator Dyson-Schwinger equations of Coulomb Gauge Yang–Mills theory within the first order formalism. Phys. Rev. D 75, 045021 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  170. Watson P., Reinhardt H.: Two-point functions of Coulomb gauge Yang–Mills theory. Phys. Rev. D 77, 025030 (2008)

    Article  ADS  Google Scholar 

  171. Popovici C., Watson P., Reinhardt H.: Quarks in Coulomb gauge perturbation theory. Phys. Rev. D 79, 045006 (2009)

    Article  ADS  Google Scholar 

  172. Popovici C., Watson P., Reinhardt H.: Coulomb gauge confinement in the heavy quark limit. Phys. Rev. D 81, 105011 (2010)

    Article  ADS  Google Scholar 

  173. Szczepaniak A.P., Swanson E.S.: Coulomb gauge QCD, confinement, and the constituent representation. Phys. Rev. D 65, 025012 (2002)

    Article  ADS  Google Scholar 

  174. Reinhardt H., Feuchter C.: On the Yang–Mills wave functional in Coulomb gauge. Phys. Rev. D 71, 105002 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  175. Schleifenbaum W., Leder M., Reinhardt H.: Infrared analysis of propagators and vertices of Yang–Mills theory in Landau and Coulomb gauge. Phys. Rev. D 73, 125019 (2006)

    Article  ADS  Google Scholar 

  176. Epple D., Reinhardt H., Schleifenbaum W.: Confining solution of the Dyson-Schwinger equations in Coulomb gauge. Phys. Rev. D 75, 045011 (2007)

    Article  ADS  Google Scholar 

  177. Rodriguez-Quintero J.: On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions. JHEP 1101, 105 (2011)

    Article  ADS  Google Scholar 

  178. Binosi D., Papavassiliou J.: Pinch technique: theory and applications. Phys. Rept. 479, 1–152 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  179. von Smekal L., Hauck A., Alkofer R.: A solution to coupled Dyson-Schwinger equations for gluons and ghosts in Landau gauge. Ann. Phys. 267, 1 (1998)

    Article  ADS  MATH  Google Scholar 

  180. Fischer C.S., Alkofer R., Reinhardt H.: The elusiveness of infrared critical exponents in Landau gauge Yang–Mills theories. Phys. Rev. D 65, 094008 (2002)

    Article  ADS  Google Scholar 

  181. Watson P., Alkofer R.: Verifying the Kugo-Ojima confinement criterion in Landau gauge QCD. Phys. Rev. Lett. 86, 5239 (2001)

    Article  ADS  Google Scholar 

  182. Alkofer R., Fischer C.S., Llanes-Estrada F.J.: Vertex functions and infrared fixed point in Landau gauge SU(N) Yang–Mills theory. Phys. Lett. B 611, 279–288 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  183. Schleifenbaum W., Maas A., Wambach J., Alkofer R.: Infrared behaviour of the ghost gluon vertex in Landau gauge Yang–Mills theory. Phys. Rev. D 72, 014017 (2005)

    Article  ADS  Google Scholar 

  184. Huber M.Q., Schwenzer K., Alkofer R.: On the infrared scaling solution of SU(N) Yang–Mills theories in the maximally Abelian gauge. Eur. Phys. J. C68, 581–600 (2010)

    Article  ADS  Google Scholar 

  185. Aguilar, A.C., Natale, A.A.: A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations. JHEP 0408, 057 (2004). Erratum added online, jan/11/2005

  186. Binosi D., Papavassiliou J.: The Pinch technique to all orders. Phys. Rev. D 66, 111901 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  187. Aguilar A.C., Binosi D., Papavassiliou J.: QCD effective charges from lattice data. JHEP 1007, 002 (2010)

    Article  ADS  Google Scholar 

  188. Grassi P.A., Hurth T., Steinhauser M.: Practical algebraic renormalization. Ann. Phys. 288, 197–248 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  189. Davies C.T.H. et al.: Update: accurate determinations of α s from realistic lattice QCD. Phys. Rev. D 78, 114507 (2008)

    Article  ADS  Google Scholar 

  190. Luscher M., Sommer R., Weisz P., Wolff U.: A precise determination of the running coupling in the SU(3) Yang–Mills theory. Nucl. Phys. B 413, 481–502 (1994)

    Article  ADS  Google Scholar 

  191. Maris P., Tandy P.C.: Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)

    Article  ADS  Google Scholar 

  192. Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267–273 (1998)

    Article  ADS  Google Scholar 

  193. Roberts H.L.L., Roberts C.D., Bashir A., Gutierrez-Guerrero L.X., Tandy P.C.: Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)

    Article  ADS  Google Scholar 

  194. Roberts H.L.L., Bashir A., Gutierrez-Guerrero L.X., Roberts C.D., Wilson D.J.: π- and ρ-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  195. Iddir F., Semlala L.: The hybrid meson: new results from the updated m g and α s parameters. Int. J. Mod. Phys. A 26, 4101–4110 (2011)

    Article  ADS  Google Scholar 

  196. Oliveira, O., de Paula, W., Frederico, T.: Linking dynamical gluon mass to chiral symmetry breaking via a QCD low energy effective field theory. arXiv:1105.4899 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rodríguez-Quintero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucaud, P., Leroy, J.P., Le Yaouanc, A. et al. The Infrared Behaviour of the Pure Yang–Mills Green Functions. Few-Body Syst 53, 387–436 (2012). https://doi.org/10.1007/s00601-011-0301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0301-2

Keywords