Abstract
Microscopic nuclear theory is based on the tenet that atomic nuclei can be accurately described as collections of point-like nucleons interacting via two- and many-body forces obeying nonrelativistic quantum mechanics—and the concept of the ab initio approach is to calculate nuclei accordingly. The forces are fixed in free-space scattering and must be accurate. We will critically review the history of this approach from the early beginnings until today. An analysis of current ab initio calculations reveals that some mistakes of history are being repeated today. The ultimate goal of nuclear theory are high-precision ab initio calculations which, as it turns out, may be possible only at the fifths order of the chiral expansion. Thus, for its fulfillment, nuclear theory is still facing an enormous task.
Similar content being viewed by others
References
K.A. Brueckner, C.A. Levinson, H.M. Mahmoud, Two-body forces and nuclear saturation. 1. Central forces. Phys. Rev. 95, 217–228 (1954)
K.A. Brueckner, J.L. Gammel, Properties of nuclear matter. Phys. Rev. 109, 1023–1039 (1958)
K.A. Brueckner, J.L. Gammel, H. Weitzner, Theory of finite nuclei. Phys. Rev. 110, 431–445 (1958)
M. Baranger, Recent progress in the understanding of finite nuclei from the two-nucleon interaction, in Proceedings of the International School of Physics “Enrico Fermi”, Course XL: Nuclear Structure and Nuclear Reactions, Varenna, 1967, eds. by M. Jean and R. A. Ricci, pp. 511–614 (Academic Press, New York, 1969)
K.T.R. Davies, M. Baranger, R.M. Tarbutton, T.T.S. Kuo, Brueckner–Hartree–Fock calculations of spherical nuclei in an Harmonic–Oscillator basis. Phys. Rev. 177, 1519–1526 (1969)
H. Kuemmel, J.G. Zabolitzky, Fully self-consistent Brueckner–Hartree–Fock and renormalized Brueckner–Hartree–Fock calculation for He-4 and O-16. Phys. Rev. C 7, 547–552 (1973)
R. Machleidt, H. Muether, A. Faessler, One boson exchange potential and the ground state of O-16. Nucl. Phys. A 241, 18–28 (1975)
T. Kuo, G.E. Brown, Structure of finite nuclei and the free nucleon-nucleon interaction: an application to O-18 and F-18. Nucl. Phys. 85, 40–86 (1966)
M. Baranger. Effective interactions and the nucleon-nucleon force, in Proceedings of the International Conference on Nuclear Physics, Munich, 1973, eds. by J. de Boer and H. J. Mang, Vol. 2, pp 93–106 (North-Holland Publishing Company, Amsterdam, 1973)
Proceedings of the International Conference on Effective Interactions and Operators in Nuclei, Tucson, Arizona, USA. Lecture Notes in Physics, ed. by B. R. Barrett, Vol. 40 (Springer, Berlin,1975)
T. Skyrme, The effective nuclear potential. Nucl. Phys. 9, 615–634 (1959)
D. Vautherin, D.M. Brink, Hartree–Fock calculations with Skyrme’s interaction. 1. Spherical nuclei. Phys. Rev. C 5, 626–647 (1972)
D. Vautherin, Selfconsistent description of nuclei, in Proceedings of the International Conference on Nuclear Physics, Munich, 1973, ed. by J. de Boer, H.J. Mang, Vol. 2, pp. 107–130 (North-Holland Publishing Company, Amsterdam, 1973)
D. Gogny, in Proceedings of the International Conference on Nuclear Physics, Munich, eds by J. de Boer, H.J. Mang, Vol. 1, pp. 48 (North-Holland Publishing Company, Amsterdam, 1973)
J. Decharge, D. Gogny, Hartree–Fock–Bogolyubov calculations with the D1 effective interactions on spherical nuclei. Phys. Rev. C 21, 1568–1593 (1980)
J.D. Walecka, A theory of highly condensed matter. Ann. Phys. 83, 491–529 (1974)
Brian D. Serot, John Dirk Walecka, The relativistic nuclear many body problem. Adv. Nucl. Phys. 16, 1–327 (1986)
John W. Negele, Structure of finite nuclei in the local-density approximation. Phys. Rev. C 1, 1260–1321 (1970)
Roderick V. Reid Jr., Local phenomenological nucleon–nucleon potentials. Ann. Phys. 50, 411–448 (1968)
X. Campi, D.W. Sprung, Spherical nuclei in the local density approximation. Nucl. Phys. A 194, 401–442 (1972)
G. Fái, J. Németh, Density-dependent effective interactions in finite nuclei (II). Nucl. Phys. A 208, 463–476 (1973)
R. Machleidt, K. Holinde, J. Németh, One-boson-exchange potential and structure of finite nuclei in the local-density approximation. Nucl. Phys. A 251, 93–104 (1975)
Quote from numerous conversations the author had with nuclear structure physicists in the 1970s
Manoj K. Banerjee, Nucleon in nuclear matter. Phys. Rev. C 45, 1359–1373 (1992)
K. Kotthoff, R. Machleidt, D. Schutte, Meson exchange corrections and properties of nuclear matter and neutron matter. Nucl. Phys. A 264, 484–492 (1976)
L. Wilets, Green’s functions method for the relativistic field theory many body problem, in Mesons in Nuclei, eds. by M. Rho, D. Wilkinson, Vol. III, pp. 791–837 (North-Holland Publishing Company, Amsterdam, 1979)
G.E. Brown, V. Koch, Mannque Rho, The Pion at finite temperature and density. Nucl. Phys. A 535, 701–714 (1991)
Anthony M. Green, J.A. Niskanen, The saturating effect of the delta (1236) in nuclear matter. Nucl. Phys. A 249, 493–509 (1975)
Anthony M. Green, Nucleon resonances in nuclei. Rept. Prog. Phys. 39, 1109–1190 (1976)
B.D. Day, F. Coester, Influence of virtual delta states on the saturation properties of nuclear matter. Phys. Rev. C 13, 1720–1740 (1976)
K. Holinde, R. Machleidt, Effect of the delta (1236) resonance on n n scattering, nuclear matter and neutron matter. Nucl. Phys. A 280, 429–466 (1977)
G.E. Brown, M. Rho, Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 66, 2720–2723 (1991)
R. Machleidt, The Meson theory of nuclear forces and nuclear structure. Adv. Nucl. Phys. 19, 189–376 (1989)
Omar Benhar, Testing the paradigm of nuclear many-body theory. Particles 6, 611 (2023)
R.B. Wiringa, From deuterons to neutron stars: variations in nuclear many-body theory. Rev. Mod. Phys. 65, 231–242 (1993)
B.S. Pudliner, V.R. Pandharipande, J. Carlson, Robert B. Wiringa, Quantum Monte Carlo calculations of A \(<\)= 6 nuclei. Phys. Rev. Lett. 74, 4396–4399 (1995)
H. Primakoff, T. Holstein, Many-body interactions in atomic and nuclear systems. Phys. Rev. 55, 1218–1234 (1939)
B.D. Day, Nuclear saturation and nuclear forces. Comments Nucl. Part. Phys. 11(3), 115–126 (1983)
J. Carlson, V.R. Pandharipande, Robert B. Wiringa, Three-nucleon interaction in 3-body, 4-body, and infinite-body systems. Nucl. Phys. A 401, 59–85 (1983)
P. Navratil, J.P. Vary, B.R. Barrett, Properties of C-12 in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728–5731 (2000)
E. Epelbaum, Walter Gloeckle, Ulf-G. Meissner, Nuclear forces from chiral Lagrangians using the method of unitary transformation. 2. The two nucleon system. Nucl. Phys. A 671, 295–331 (2000)
D.R. Entem, R. Machleidt, Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003)
R. Machleidt, D.R. Entem, Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011)
Evgeny Epelbaum, Hans-Werner. Hammer, Ulf-G. Meissner, Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)
C. Ordonez, L. Ray, U. van Kolck, The Two nucleon potential from chiral Lagrangians. Phys. Rev. C 53, 2086–2105 (1996)
Norbert Kaiser, S. Gerstendorfer, W. Weise, Peripheral NN scattering: role of delta excitation, correlated two pion and vector meson exchange. Nucl. Phys. A 637, 395–420 (1998)
Hermann Krebs, Evgeny Epelbaum, Ulf-G. Meissner, Nuclear forces with delta-excitations up to next-to-next-to-leading order. I. Peripheral nucleon-nucleon waves. Eur. Phys. J. A 32, 127–137 (2007)
E. Epelbaum, H. Krebs, Ulf-G. Meissner, Delta-excitations and the three-nucleon force. Nucl. Phys. A 806, 65–78 (2008)
Bruce R. Barrett, Petr Navratil, James P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013)
Robert Roth, Joachim Langhammer, Angelo Calci, Sven Binder, Petr Navratil, Similarity-transformed chiral NN+3N interactions for the ab initio description of 12-C and 16-O. Phys. Rev. Lett. 107, 072501 (2011)
M. Piarulli et al., Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120(5), 052503 (2018)
D. Lonardoni, S. Gandolfi, J.E. Lynn, C. Petrie, J. Carlson, K.E. Schmidt, A. Schwenk, Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions. Phys. Rev. C 97(4), 044318 (2018)
P. Maris et al., Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103(5), 054001 (2021)
P. Maris et al., Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO. Phys. Rev. C 106(6), 064002 (2022)
D. Lonardoni, A. Lovato, Steven C. Pieper, R.B. Wiringa, Variational calculation of the ground state of closed-shell nuclei up to \(A=40\). Phys. Rev. C 96(2), 024326 (2017)
Sven Binder, Joachim Langhammer, Angelo Calci, Robert Roth, Ab initio path to heavy nuclei. Phys. Lett. B 736, 119–123 (2014)
V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, T. Duguet, Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101(1), 014318 (2020)
J. Hoppe, C. Drischler, K. Hebeler, A. Schwenk, J. Simonis, Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei. Phys. Rev. C 100(2), 024318 (2019)
Thomas Hüther, Klaus Vobig, Kai Hebeler, Ruprecht Machleidt, Robert Roth, Family of chiral two- plus three-nucleon interactions for accurate nuclear structure studies. Phys. Lett. B 808, 135651 (2020)
K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011)
Kai Hebeler, Three-nucleon forces: implementation and applications to atomic nuclei and dense matter. Phys. Rept. 890, 1–116 (2021)
J. Simonis, S.R. Stroberg, K. Hebeler, J.D. Holt, A. Schwenk, Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96(1), 014303 (2017)
T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf, G. Hagen, J.D. Holt, G.R. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Structure of the lightest tin isotopes. Phys. Rev. Lett. 120(15), 152503 (2018)
A. Ekström, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, \({\varDelta }\) isobars and nuclear saturation. Phys. Rev. C 97(2), 024332 (2018)
W.G. Jiang, A. Ekström, C. Forssén, G. Hagen, G.R. Jansen, T. Papenbrock, Accurate bulk properties of nuclei from \(A=2\) to \(\infty \) from potentials with \({\varDelta }\) isobars. Phys. Rev. C 102(5), 054301 (2020)
C. Drischler, K. Hebeler, A. Schwenk, Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122(4), 042501 (2019)
D.R. Entem, R. Machleidt, Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C 96(2), 024004 (2017)
H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rept. 621, 165–222 (2016)
Francesca Sammarruca, Randy Millerson, Exploring the relationship between nuclear matter and finite nuclei with chiral two- and three-nucleon forces. Phys. Rev. C 102(3), 034313 (2020)
Y. Nosyk, D.R. Entem, R. Machleidt, Nucleon–nucleon potentials from \({{\varDelta }}\)-full chiral effective-field-theory and implications. Phys. Rev. C 104(5), 054001 (2021)
A. Kievsky, M. Viviani, S. Rosati, Polarization observables in p - d scattering below 30-MeV. Phys. Rev. C 64, 024002 (2001)
L.E. Marcucci, A. Kievsky, L. Girlanda, S. Rosati, M. Viviani, N-d elastic scattering using the hyperspherical harmonics approach with realistic local and non-local interactions. Phys. Rev. C 80, 034003 (2009)
E. Epelbaum et al., Towards high-order calculations of three-nucleon scattering in chiral effective field theory. Eur. Phys. J. A 56(3), 92 (2020)
R. Machleidt, The High precision, charge dependent Bonn nucleon–nucleon potential. Phys. Rev. C 63, 024001 (2001)
S.A. Coon, H.K. Han, Reworking the Tucson–Melbourne three nucleon potential. Few Body Syst. 30, 131–141 (2001)
Evgeny Epelbaum, Hermann Krebs, Patrick Reinert, High-precision nuclear forces from chiral EFT: State-of-the-art, challenges and outlook. Front. Phys. 8, 98 (2020)
P. Reinert, H. Krebs, E. Epelbaum, Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 54(5), 86 (2018)
H. Witała, J. Golak, R. Skibiński, Significance of chiral three-nucleon force contact terms for understanding of elastic nucleon-deuteron scattering. Phys. Rev. C 105(5), 054004 (2022)
Hermann Krebs, A. Gasparyan, Evgeny Epelbaum, Chiral three-nucleon force at N\(^4\)LO I: longest-range contributions. Phys. Rev. C 85, 054006 (2012)
Hermann Krebs, A. Gasparyan, Evgeny Epelbaum, Chiral three-nucleon force at \(N^4LO\) II: intermediate-range contributions. Phys. Rev. C 87(5), 054007 (2013)
L. Girlanda, A. Kievsky, and M. Viviani. Subleading contributions to the three-nucleon contact interaction. Phys. Rev. C, 84(1), 014001 (2011). [Erratum: Phys.Rev.C 102, 019903 (2020)]
L. Girlanda, A. Kievsky, M. Viviani, L.E. Marcucci, Short-range three-nucleon interaction from A=3 data and its hierarchical structure. Phys. Rev. C 99(5), 054003 (2019)
L. Girlanda, E. Filandri, A. Kievsky, L.E. Marcucci, M. Viviani, Effect of the N3LO three-nucleon contact interaction on p-d scattering observables. Phys. Rev. C 107(6), L061001 (2023)
E. Epelbaum, A.M. Gasparyan, H. Krebs, C. Schat, Three-nucleon force at large distances: insights from chiral effective field theory and the large-N\(_{c}\) expansion. Eur. Phys. J. A 51(3), 26 (2015)
Acknowledgements
This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270.
Author information
Authors and Affiliations
Contributions
RM wrote the whole manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Machleidt, R. What is ab initio?. Few-Body Syst 64, 77 (2023). https://doi.org/10.1007/s00601-023-01857-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-023-01857-2