Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What is ab initio?

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Microscopic nuclear theory is based on the tenet that atomic nuclei can be accurately described as collections of point-like nucleons interacting via two- and many-body forces obeying nonrelativistic quantum mechanics—and the concept of the ab initio approach is to calculate nuclei accordingly. The forces are fixed in free-space scattering and must be accurate. We will critically review the history of this approach from the early beginnings until today. An analysis of current ab initio calculations reveals that some mistakes of history are being repeated today. The ultimate goal of nuclear theory are high-precision ab initio calculations which, as it turns out, may be possible only at the fifths order of the chiral expansion. Thus, for its fulfillment, nuclear theory is still facing an enormous task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Other interesting cases are the models by Soma et al. [57] and Maris et al. [54] for which, however, presently no nuclear matter results are available.

References

  1. K.A. Brueckner, C.A. Levinson, H.M. Mahmoud, Two-body forces and nuclear saturation. 1. Central forces. Phys. Rev. 95, 217–228 (1954)

    ADS  MATH  Google Scholar 

  2. K.A. Brueckner, J.L. Gammel, Properties of nuclear matter. Phys. Rev. 109, 1023–1039 (1958)

    ADS  MathSciNet  Google Scholar 

  3. K.A. Brueckner, J.L. Gammel, H. Weitzner, Theory of finite nuclei. Phys. Rev. 110, 431–445 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  4. M. Baranger, Recent progress in the understanding of finite nuclei from the two-nucleon interaction, in Proceedings of the International School of Physics “Enrico Fermi”, Course XL: Nuclear Structure and Nuclear Reactions, Varenna, 1967, eds. by M. Jean and R. A. Ricci, pp. 511–614 (Academic Press, New York, 1969)

  5. K.T.R. Davies, M. Baranger, R.M. Tarbutton, T.T.S. Kuo, Brueckner–Hartree–Fock calculations of spherical nuclei in an Harmonic–Oscillator basis. Phys. Rev. 177, 1519–1526 (1969)

    ADS  Google Scholar 

  6. H. Kuemmel, J.G. Zabolitzky, Fully self-consistent Brueckner–Hartree–Fock and renormalized Brueckner–Hartree–Fock calculation for He-4 and O-16. Phys. Rev. C 7, 547–552 (1973)

    ADS  Google Scholar 

  7. R. Machleidt, H. Muether, A. Faessler, One boson exchange potential and the ground state of O-16. Nucl. Phys. A 241, 18–28 (1975)

    ADS  Google Scholar 

  8. T. Kuo, G.E. Brown, Structure of finite nuclei and the free nucleon-nucleon interaction: an application to O-18 and F-18. Nucl. Phys. 85, 40–86 (1966)

    Google Scholar 

  9. M. Baranger. Effective interactions and the nucleon-nucleon force, in Proceedings of the International Conference on Nuclear Physics, Munich, 1973, eds. by J. de Boer and H. J. Mang, Vol. 2, pp 93–106 (North-Holland Publishing Company, Amsterdam, 1973)

  10. Proceedings of the International Conference on Effective Interactions and Operators in Nuclei, Tucson, Arizona, USA. Lecture Notes in Physics, ed. by B. R. Barrett, Vol. 40 (Springer, Berlin,1975)

  11. T. Skyrme, The effective nuclear potential. Nucl. Phys. 9, 615–634 (1959)

    MATH  Google Scholar 

  12. D. Vautherin, D.M. Brink, Hartree–Fock calculations with Skyrme’s interaction. 1. Spherical nuclei. Phys. Rev. C 5, 626–647 (1972)

    ADS  Google Scholar 

  13. D. Vautherin, Selfconsistent description of nuclei, in Proceedings of the International Conference on Nuclear Physics, Munich, 1973, ed. by J. de Boer, H.J. Mang, Vol. 2, pp. 107–130 (North-Holland Publishing Company, Amsterdam, 1973)

  14. D. Gogny, in Proceedings of the International Conference on Nuclear Physics, Munich, eds by J. de Boer, H.J. Mang, Vol. 1, pp. 48 (North-Holland Publishing Company, Amsterdam, 1973)

  15. J. Decharge, D. Gogny, Hartree–Fock–Bogolyubov calculations with the D1 effective interactions on spherical nuclei. Phys. Rev. C 21, 1568–1593 (1980)

    ADS  Google Scholar 

  16. J.D. Walecka, A theory of highly condensed matter. Ann. Phys. 83, 491–529 (1974)

    ADS  Google Scholar 

  17. Brian D. Serot, John Dirk Walecka, The relativistic nuclear many body problem. Adv. Nucl. Phys. 16, 1–327 (1986)

    Google Scholar 

  18. John W. Negele, Structure of finite nuclei in the local-density approximation. Phys. Rev. C 1, 1260–1321 (1970)

    ADS  Google Scholar 

  19. Roderick V. Reid Jr., Local phenomenological nucleon–nucleon potentials. Ann. Phys. 50, 411–448 (1968)

    ADS  Google Scholar 

  20. X. Campi, D.W. Sprung, Spherical nuclei in the local density approximation. Nucl. Phys. A 194, 401–442 (1972)

    ADS  Google Scholar 

  21. G. Fái, J. Németh, Density-dependent effective interactions in finite nuclei (II). Nucl. Phys. A 208, 463–476 (1973)

    ADS  Google Scholar 

  22. R. Machleidt, K. Holinde, J. Németh, One-boson-exchange potential and structure of finite nuclei in the local-density approximation. Nucl. Phys. A 251, 93–104 (1975)

    ADS  Google Scholar 

  23. Quote from numerous conversations the author had with nuclear structure physicists in the 1970s

  24. Manoj K. Banerjee, Nucleon in nuclear matter. Phys. Rev. C 45, 1359–1373 (1992)

    ADS  Google Scholar 

  25. K. Kotthoff, R. Machleidt, D. Schutte, Meson exchange corrections and properties of nuclear matter and neutron matter. Nucl. Phys. A 264, 484–492 (1976)

    ADS  Google Scholar 

  26. L. Wilets, Green’s functions method for the relativistic field theory many body problem, in Mesons in Nuclei, eds. by M. Rho, D. Wilkinson, Vol. III, pp. 791–837 (North-Holland Publishing Company, Amsterdam, 1979)

  27. G.E. Brown, V. Koch, Mannque Rho, The Pion at finite temperature and density. Nucl. Phys. A 535, 701–714 (1991)

    ADS  Google Scholar 

  28. Anthony M. Green, J.A. Niskanen, The saturating effect of the delta (1236) in nuclear matter. Nucl. Phys. A 249, 493–509 (1975)

    ADS  Google Scholar 

  29. Anthony M. Green, Nucleon resonances in nuclei. Rept. Prog. Phys. 39, 1109–1190 (1976)

    ADS  Google Scholar 

  30. B.D. Day, F. Coester, Influence of virtual delta states on the saturation properties of nuclear matter. Phys. Rev. C 13, 1720–1740 (1976)

    ADS  Google Scholar 

  31. K. Holinde, R. Machleidt, Effect of the delta (1236) resonance on n n scattering, nuclear matter and neutron matter. Nucl. Phys. A 280, 429–466 (1977)

    ADS  Google Scholar 

  32. G.E. Brown, M. Rho, Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 66, 2720–2723 (1991)

    ADS  Google Scholar 

  33. R. Machleidt, The Meson theory of nuclear forces and nuclear structure. Adv. Nucl. Phys. 19, 189–376 (1989)

    Google Scholar 

  34. Omar Benhar, Testing the paradigm of nuclear many-body theory. Particles 6, 611 (2023)

    Google Scholar 

  35. R.B. Wiringa, From deuterons to neutron stars: variations in nuclear many-body theory. Rev. Mod. Phys. 65, 231–242 (1993)

    ADS  Google Scholar 

  36. B.S. Pudliner, V.R. Pandharipande, J. Carlson, Robert B. Wiringa, Quantum Monte Carlo calculations of A \(<\)= 6 nuclei. Phys. Rev. Lett. 74, 4396–4399 (1995)

    ADS  Google Scholar 

  37. H. Primakoff, T. Holstein, Many-body interactions in atomic and nuclear systems. Phys. Rev. 55, 1218–1234 (1939)

    ADS  MATH  Google Scholar 

  38. B.D. Day, Nuclear saturation and nuclear forces. Comments Nucl. Part. Phys. 11(3), 115–126 (1983)

    MathSciNet  Google Scholar 

  39. J. Carlson, V.R. Pandharipande, Robert B. Wiringa, Three-nucleon interaction in 3-body, 4-body, and infinite-body systems. Nucl. Phys. A 401, 59–85 (1983)

    ADS  Google Scholar 

  40. P. Navratil, J.P. Vary, B.R. Barrett, Properties of C-12 in the ab initio nuclear shell model. Phys. Rev. Lett. 84, 5728–5731 (2000)

    ADS  Google Scholar 

  41. E. Epelbaum, Walter Gloeckle, Ulf-G. Meissner, Nuclear forces from chiral Lagrangians using the method of unitary transformation. 2. The two nucleon system. Nucl. Phys. A 671, 295–331 (2000)

    ADS  Google Scholar 

  42. D.R. Entem, R. Machleidt, Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003)

    ADS  Google Scholar 

  43. R. Machleidt, D.R. Entem, Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011)

    ADS  Google Scholar 

  44. Evgeny Epelbaum, Hans-Werner. Hammer, Ulf-G. Meissner, Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)

    ADS  Google Scholar 

  45. C. Ordonez, L. Ray, U. van Kolck, The Two nucleon potential from chiral Lagrangians. Phys. Rev. C 53, 2086–2105 (1996)

    ADS  Google Scholar 

  46. Norbert Kaiser, S. Gerstendorfer, W. Weise, Peripheral NN scattering: role of delta excitation, correlated two pion and vector meson exchange. Nucl. Phys. A 637, 395–420 (1998)

    ADS  Google Scholar 

  47. Hermann Krebs, Evgeny Epelbaum, Ulf-G. Meissner, Nuclear forces with delta-excitations up to next-to-next-to-leading order. I. Peripheral nucleon-nucleon waves. Eur. Phys. J. A 32, 127–137 (2007)

    ADS  Google Scholar 

  48. E. Epelbaum, H. Krebs, Ulf-G. Meissner, Delta-excitations and the three-nucleon force. Nucl. Phys. A 806, 65–78 (2008)

    ADS  Google Scholar 

  49. Bruce R. Barrett, Petr Navratil, James P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013)

    ADS  Google Scholar 

  50. Robert Roth, Joachim Langhammer, Angelo Calci, Sven Binder, Petr Navratil, Similarity-transformed chiral NN+3N interactions for the ab initio description of 12-C and 16-O. Phys. Rev. Lett. 107, 072501 (2011)

    ADS  Google Scholar 

  51. M. Piarulli et al., Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120(5), 052503 (2018)

    ADS  Google Scholar 

  52. D. Lonardoni, S. Gandolfi, J.E. Lynn, C. Petrie, J. Carlson, K.E. Schmidt, A. Schwenk, Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions. Phys. Rev. C 97(4), 044318 (2018)

    ADS  Google Scholar 

  53. P. Maris et al., Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103(5), 054001 (2021)

    ADS  Google Scholar 

  54. P. Maris et al., Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO. Phys. Rev. C 106(6), 064002 (2022)

    ADS  Google Scholar 

  55. D. Lonardoni, A. Lovato, Steven C. Pieper, R.B. Wiringa, Variational calculation of the ground state of closed-shell nuclei up to \(A=40\). Phys. Rev. C 96(2), 024326 (2017)

    ADS  Google Scholar 

  56. Sven Binder, Joachim Langhammer, Angelo Calci, Robert Roth, Ab initio path to heavy nuclei. Phys. Lett. B 736, 119–123 (2014)

    ADS  Google Scholar 

  57. V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, T. Duguet, Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101(1), 014318 (2020)

    ADS  Google Scholar 

  58. J. Hoppe, C. Drischler, K. Hebeler, A. Schwenk, J. Simonis, Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei. Phys. Rev. C 100(2), 024318 (2019)

    ADS  Google Scholar 

  59. Thomas Hüther, Klaus Vobig, Kai Hebeler, Ruprecht Machleidt, Robert Roth, Family of chiral two- plus three-nucleon interactions for accurate nuclear structure studies. Phys. Lett. B 808, 135651 (2020)

    Google Scholar 

  60. K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011)

    ADS  Google Scholar 

  61. Kai Hebeler, Three-nucleon forces: implementation and applications to atomic nuclei and dense matter. Phys. Rept. 890, 1–116 (2021)

    ADS  MATH  Google Scholar 

  62. J. Simonis, S.R. Stroberg, K. Hebeler, J.D. Holt, A. Schwenk, Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96(1), 014303 (2017)

    ADS  Google Scholar 

  63. T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf, G. Hagen, J.D. Holt, G.R. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Structure of the lightest tin isotopes. Phys. Rev. Lett. 120(15), 152503 (2018)

    ADS  Google Scholar 

  64. A. Ekström, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, \({\varDelta }\) isobars and nuclear saturation. Phys. Rev. C 97(2), 024332 (2018)

    ADS  Google Scholar 

  65. W.G. Jiang, A. Ekström, C. Forssén, G. Hagen, G.R. Jansen, T. Papenbrock, Accurate bulk properties of nuclei from \(A=2\) to \(\infty \) from potentials with \({\varDelta }\) isobars. Phys. Rev. C 102(5), 054301 (2020)

    ADS  Google Scholar 

  66. C. Drischler, K. Hebeler, A. Schwenk, Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122(4), 042501 (2019)

    ADS  Google Scholar 

  67. D.R. Entem, R. Machleidt, Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C 96(2), 024004 (2017)

    ADS  Google Scholar 

  68. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rept. 621, 165–222 (2016)

    ADS  MathSciNet  Google Scholar 

  69. Francesca Sammarruca, Randy Millerson, Exploring the relationship between nuclear matter and finite nuclei with chiral two- and three-nucleon forces. Phys. Rev. C 102(3), 034313 (2020)

    ADS  Google Scholar 

  70. Y. Nosyk, D.R. Entem, R. Machleidt, Nucleon–nucleon potentials from \({{\varDelta }}\)-full chiral effective-field-theory and implications. Phys. Rev. C 104(5), 054001 (2021)

    ADS  Google Scholar 

  71. A. Kievsky, M. Viviani, S. Rosati, Polarization observables in p - d scattering below 30-MeV. Phys. Rev. C 64, 024002 (2001)

    ADS  Google Scholar 

  72. L.E. Marcucci, A. Kievsky, L. Girlanda, S. Rosati, M. Viviani, N-d elastic scattering using the hyperspherical harmonics approach with realistic local and non-local interactions. Phys. Rev. C 80, 034003 (2009)

    ADS  Google Scholar 

  73. E. Epelbaum et al., Towards high-order calculations of three-nucleon scattering in chiral effective field theory. Eur. Phys. J. A 56(3), 92 (2020)

    ADS  Google Scholar 

  74. R. Machleidt, The High precision, charge dependent Bonn nucleon–nucleon potential. Phys. Rev. C 63, 024001 (2001)

    ADS  Google Scholar 

  75. S.A. Coon, H.K. Han, Reworking the Tucson–Melbourne three nucleon potential. Few Body Syst. 30, 131–141 (2001)

    ADS  Google Scholar 

  76. Evgeny Epelbaum, Hermann Krebs, Patrick Reinert, High-precision nuclear forces from chiral EFT: State-of-the-art, challenges and outlook. Front. Phys. 8, 98 (2020)

    Google Scholar 

  77. P. Reinert, H. Krebs, E. Epelbaum, Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 54(5), 86 (2018)

    ADS  Google Scholar 

  78. H. Witała, J. Golak, R. Skibiński, Significance of chiral three-nucleon force contact terms for understanding of elastic nucleon-deuteron scattering. Phys. Rev. C 105(5), 054004 (2022)

    ADS  Google Scholar 

  79. Hermann Krebs, A. Gasparyan, Evgeny Epelbaum, Chiral three-nucleon force at N\(^4\)LO I: longest-range contributions. Phys. Rev. C 85, 054006 (2012)

    ADS  Google Scholar 

  80. Hermann Krebs, A. Gasparyan, Evgeny Epelbaum, Chiral three-nucleon force at \(N^4LO\) II: intermediate-range contributions. Phys. Rev. C 87(5), 054007 (2013)

    ADS  Google Scholar 

  81. L. Girlanda, A. Kievsky, and M. Viviani. Subleading contributions to the three-nucleon contact interaction. Phys. Rev. C, 84(1), 014001 (2011). [Erratum: Phys.Rev.C 102, 019903 (2020)]

  82. L. Girlanda, A. Kievsky, M. Viviani, L.E. Marcucci, Short-range three-nucleon interaction from A=3 data and its hierarchical structure. Phys. Rev. C 99(5), 054003 (2019)

    ADS  Google Scholar 

  83. L. Girlanda, E. Filandri, A. Kievsky, L.E. Marcucci, M. Viviani, Effect of the N3LO three-nucleon contact interaction on p-d scattering observables. Phys. Rev. C 107(6), L061001 (2023)

    ADS  Google Scholar 

  84. E. Epelbaum, A.M. Gasparyan, H. Krebs, C. Schat, Three-nucleon force at large distances: insights from chiral effective field theory and the large-N\(_{c}\) expansion. Eur. Phys. J. A 51(3), 26 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270.

Author information

Authors and Affiliations

Authors

Contributions

RM wrote the whole manuscript.

Corresponding author

Correspondence to R. Machleidt.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machleidt, R. What is ab initio?. Few-Body Syst 64, 77 (2023). https://doi.org/10.1007/s00601-023-01857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01857-2