Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heat Transfer in Sandstones at Low Temperature

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper addresses experimental and modeling investigations of heat transfer in sandstones subject to low-temperature conditions. At low temperature, pore liquid (e.g., water) would freeze; thus, heat is transferred not only in the form of specific heat but also in the form of latent heat. Moreover, the melting point is not constant; it depends on the pore size. Considering these characteristics, a governing equation of heat transfer with phase transition is established using the equivalent heat-capacity method. To calculate the equivalent heat capacity, the relation between ice content and temperature is assessed by the pore-size distribution curve. Heating tests (from 77 to 293 K) of sandstone samples in three saturation conditions (water-saturated, oil-saturated, and dry) are conducted and simulated using the model established. The results reveal that the temperature sensitivity of the heat capacity of dry sandstone is more pronounced in the low-temperature regime than in the high-temperature regime. The thermal conductivity of dry sandstone increases with temperature in the low-temperature regime. This is different with the case of the high-temperature regime at which the thermal conductivity decreases with temperature. The temperature evolution curve for the water-saturated sample features a plateau regime, that is, the temperature remains quasi-constant with time. The analysis demonstrates that the position and length of this temperature plateau are governed by the pore-size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A s :

Convective area

\(a,{\text{ }}b,{\text{ }}{a_j},{\text{ }}{b_j}\) :

Coefficients describing the dependence of heat capacity on temperature; j can be i (ice), w (water), s (solid) or o (oil)

Bi:

Biot number

c :

Specific heat

D :

Spreading coefficient

e :

Thickness of pre-melting liquid film

h :

Convection coefficient

k :

Thermal conductivity

L :

Latent heat

L c :

Characteristic length

m, n :

Coefficients describing the dependence of thermal conductivity on temperature

p :

Mercury pressure

r :

Pore radius

r i :

Smallest pore-access radius invaded by ice crystals

\({r_a}\) :

Given radius

R :

Correlation coefficient

S w, S i :

Molar entropy of water (w) and ice (i)

t :

Time

T :

Temperature

T i :

Initial temperature

T :

Environment temperature

T s :

Temperatures of the solid surface

T m :

Melting point at atmospheric pressure

V :

Volume

\({\bar {V}_{\text{i}}},{\text{ }}{\bar {V}_{\text{w}}}\) :

Molar volume of ice (i) and water (w)

α :

Contact angle of ice–water interface

ρ :

Density

\({\rho _{\text{i}}},{\rho _{\text{w}}},{\rho _{\text{s}}}\) :

Density of ice (i), water (w) and solid (s)

\(\nabla\) :

Gradient operator

θ i :

Volumetric fraction of ice

\(\phi\) :

Porosity

\({\gamma _{{\text{iw}}}},{\gamma _{{\text{si}}}},{\gamma _{{\text{sw}}}}\) :

Interface stress of ice–water (iw), solid–ice (si) and solid–water (sw)

\(\xi\) :

Range of intermolecular forces

\({\sigma _{{\text{Hg}}}}\) :

Interfacial tension of mercury

References

  • Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, Chichester

    Google Scholar 

  • Birch AF, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci 238:529–558

    Article  Google Scholar 

  • Boswell R (2009) Is gas hydrate energy within reach? Science 325:957–958

    Article  Google Scholar 

  • Brotons V, Tomás R, Ivorra S, Alarcón J (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127

    Article  Google Scholar 

  • Cha M, Yin X, Kneafsey T et al (2014) Cryogenic fracturing for reservoir stimulation—laboratory studies. J Pet Sci Eng 124:436–450

    Article  Google Scholar 

  • Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10:539–544

    Article  Google Scholar 

  • Clifford P, Berry P, Gu H (1991) Modeling the vertical confinement of injection-well thermal fractures. SPE Prod Eng 6:377–383

    Article  Google Scholar 

  • Coussy O (2005) Poromechanics of freezing materials. J Mech Phys Solids 53:1689–1718

    Article  Google Scholar 

  • Coussy O (2006) Deformation and stress from in-pore drying-induced crystallization of salt. J Mech Phys Solids 54:1517–1547

    Article  Google Scholar 

  • Coussy O (2011) Mechanics and physics of porous solids. Wiley, New York

    Google Scholar 

  • Coussy O, Monteiro PJ (2008) Poroelastic model for concrete exposed to freezing temperatures. Cem Concr Res 38:40–48

    Article  Google Scholar 

  • Detienne J, Creusot M, Kessler N, Sahuquet B, Bergerot J (1998) Thermally induced fractures: a field-proven analytical model. SPE Reserv Eval Eng 1:30–35

    Article  Google Scholar 

  • Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30(10):1517–1525

    Article  Google Scholar 

  • Eppelbaum LV, Kutasov IM, Pilchin AN (2014)  Applied geothermics. Lecture notes in earth system sciences. Springer, Berlin

    Book  Google Scholar 

  • Espinosa RM, Franke L (2006) Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cem Concr Res 36:1969–1984

    Article  Google Scholar 

  • Fen-Chong T, Fabbri A, Thiery M, Dangla P (2013) Poroelastic analysis of partial freezing in cohesive porous materials. J Appl Mech 80:020910

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res Earth Surf 112:F2

    Article  Google Scholar 

  • Hajpál M (2002) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38:373–382

    Article  Google Scholar 

  • Hajpál M, Török A (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322

    Article  Google Scholar 

  • Hasler A, Gruber S, Beutel J (2012) Kinematics of steep bedrock permafrost. J Geophys Res Earth Surf 117:F01016

    Article  Google Scholar 

  • Jin HJ, Chang XL, Wang SL (2007) Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. J Geophys Res Earth Surf 112:F02S09

    Article  Google Scholar 

  • Kaufmann J, Loser R, Leemann A (2009) Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. J Colloid Interface Sci 336(2):730–737

    Article  Google Scholar 

  • Lin W, Fulton PM, Harris RN, Tadai O, Matsubayashi O, Tanikawa W, Kinoshita M (2014) Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST). Earth Planets Space 66:48

    Article  Google Scholar 

  • Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Methods Geomech 30:703–722

    Article  Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2006) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129

    Article  Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. OUP, Oxford

    Google Scholar 

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Sun Z, Scherer GW (2010) Pore size and shape in mortar by thermoporometry. Cem Concr Res 40:740–751

    Article  Google Scholar 

  • Tian H, Kempka T, Xu N-X, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117

    Article  Google Scholar 

  • Touloukian YS (1970) Thermophysical properties of matter: the TPRC data series; a comprehensive compilation of data, vol 1. Ifi/Plenum, New York

    Google Scholar 

  • Walder JS, Hallet B (1986) The physical basis of frost weathering: toward a more fundamental and unified perspective. Arct Alp Res 18:27–32

    Article  Google Scholar 

  • Wang LL, Zhang GQ, Hallais S et al (2017) Swelling of shales: a multiscale experimental investigation. Energy Fuel 31(10):10442–10451

    Article  Google Scholar 

  • Wardeh G, Perrin B (2008) Freezing–thawing phenomena in fired clay materials and consequences on their durability. Constr Build Mater 22:820–828

    Article  Google Scholar 

  • Wen H, Lu J-h, Xiao Y, Deng J (2015) Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield. Thermochim Acta 619:41–47

    Article  Google Scholar 

  • Yang R, Lemarchand E, Fen-Chong T, Azouni A (2015) A micromechanics model for partial freezing in porous media. Int J Solids Struct 75:109–121

    Article  Google Scholar 

  • Yang R, Lemarchand E, Fen-Chong T (2016) A micromechanics model for solute diffusion coefficient in unsaturated granular materials. Transp Porous Media 111:347–368

    Article  Google Scholar 

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103

    Article  Google Scholar 

  • Zeng Q, Fen-Chong T, Dangla P, Li K (2011) A study of freezing behavior of cementitious materials by poromechanical approach. Int J Solids Struct 48:3267–3273

    Article  Google Scholar 

  • Zhu C, Arson C (2015) A model of damage and healing coupling halite thermo-mechanical behavior to microstructure evolution. Geotech Geol Eng 33(2):389–410

    Article  Google Scholar 

  • Zuber B, Marchand J (2004) Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria. Mater Struct 37:257–270

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant no. 51809275) and the Science Foundation of China University of Petroleum, Beijing (2462018BJC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, L., Zhao, B. et al. Heat Transfer in Sandstones at Low Temperature. Rock Mech Rock Eng 52, 35–45 (2019). https://doi.org/10.1007/s00603-018-1595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1595-x

Keywords