Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared a surface imprinted polymer (SIP) film for label-free recognition of immunoglobulin G (IgG). The IgG-SIPs were obtained by covalent immobilization of IgG via a cleavable covalent bond and a suitable spacer unit to a gold electrode, followed by electrodepostion of a nm-thin film of polydopamine (PDA). The IgG was then removed by destruction of the cleavable bond so that complementary binding sites were created on the surface of the film. IgG-SIPs with various thicknesses of the PDA films were compared with respect to their affinity to IgG using a quartz crystal microbalance combined with flow injection analysis. The films were also characterized by cyclic voltammetry and scanning electron microscopy. The IgG-SIPs with a film thickness of around 17 nm showed the most pronounced imprinting effect (IF 1.66) and a binding constant of 296 nM.

A strategy for preparation of the IgG-Surface Imprinted Polymeric (IgG-SIP) thin films was developed. IgG was covalently immobilized via a cleavable cross-linker to a gold electrode surface followed by electrochemical deposition of a nanometer thin PDA film. After cleaving S-S bond in the linker the IgG was removed leaving behind the complementary binding sites confined in the surface of the polymer film. The prepared IgG-SIPs were applied for IgG recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 20(3):859–868. doi:10.1021/Cm703190w

    Article  CAS  Google Scholar 

  2. Tamayo FG, Turiel E, Martin-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152(1-2):32–40. doi:10.1016/j.chroma.2006.08.095

    Article  CAS  Google Scholar 

  3. Pichon V, Haupt K (2006) Affinity separations on molecularly imprinted polymers with special emphasis on solid–phase extraction. J Liq Chromatogr Relat Technol 29(7–8):989–1023. doi:10.1080/10826070600574739

    Article  CAS  Google Scholar 

  4. Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57(12):1733–1741. doi:10.1016/j.addr.2005.07.010

    Article  CAS  Google Scholar 

  5. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–27. doi:10.1021/Cr980039a

    Article  CAS  Google Scholar 

  6. Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398:593–597. doi:10.1038/19267

    Article  CAS  Google Scholar 

  7. Yilmaz E, Haupt K, Mosbach K (2000) The Use of immobilized templates—new approach in molecular imprinting. Angew Chem Int Ed 39:2115–2118

    Article  CAS  Google Scholar 

  8. Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem 78:317–320

    Article  CAS  Google Scholar 

  9. Qin L, He X-W, Zhang W, Li W-Y, Zhang Y-K (2009) Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. J chromatogr A 1216:807–814. doi:10.1016/j.chroma.2008.12.007

    Article  CAS  Google Scholar 

  10. Titirici MM, Hall AJ, Sellergren B (2002) Hierarchically imprinted stationary phases: mesoporous polymer beads containing surface-confined binding sites for adenine. Chem Mater 14(1):21–23. doi:10.1021/Cm011207+

    Article  CAS  Google Scholar 

  11. Titirici MM, Sellergren B (2004) Peptide recognition via hierarchical imprinting. Anal Bioanal Chem 378:1913–1921. doi:10.1007/s00216-003-2445-5

    Article  CAS  Google Scholar 

  12. Nematollahzadeh A, Sun W, Aureliano CSA, Lutkemeyer D, Stute J, Abdekhodaie MJ, Shojaei A, Sellergren B (2011) High-capacity hierarchically imprinted polymer beads for protein recognition and capture. Angew Chem Int Ed 50(2):495–498. doi:10.1002/anie.201004774

    Article  CAS  Google Scholar 

  13. Lautner G, Kaev J, Reut J, Öpik A, Rappich J, Syritski V, Gyurcsanyi RE (2011) Selective artificial receptors based on micropatterned surface-imprinted polymers for label-free detection of proteins by SPR imaging. Adv Funct Mater 21(3):591–597. doi:10.1002/adfm.201001753

    Article  CAS  Google Scholar 

  14. Menaker A, Syritski V, Reut J, Öpik A, Horváth V, Gyurcsányi RE (2009) Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition. Adv Mater 21(22):2271–2275. doi:10.1002/adma.200803597

    Article  CAS  Google Scholar 

  15. Schirhagl R, Lieberzeit PA, Blaas D, Dickert FL (2010) Chemosensors for viruses based on artificial immunoglobulin copies. Adv Mater 22:2078–2081. doi:10.1002/adma.200903517

    Article  CAS  Google Scholar 

  16. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  17. Arce L, Zougagh M, Arce C, Moreno A, Ríos A, Valcárcel M (2007) Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin. Biosens Bioelectron 22(12):3217–3223. doi:10.1016/j.bios.2007.02.014

    Article  CAS  Google Scholar 

  18. Zhang Q, Huang Y, Zhao R, Liu G, Chen Y (2008) Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosens Bioelectron 24:48–54. doi:10.1016/j.bios.2008.03.009

    Article  CAS  Google Scholar 

  19. Syritski V, Reut J, Menaker A, Gyurcsányi RE, Öpik A (2008) Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim Acta 53(6):2729–2736. doi:10.1016/j.electacta.2007.10.032

    Article  CAS  Google Scholar 

  20. Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71:1366–1370

    Article  CAS  Google Scholar 

  21. Liu K, Zeng J-X, Wei W-Z, Liu X-Y, Gao Y-P (2006) Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal Bioanal Chem 385:724–729. doi:10.1007/s00216-006-0489-z

    Article  CAS  Google Scholar 

  22. Ouyang R, Lei J, Ju H (2008) Surface molecularly imprinted nanowire for protein specific recognition. Chemical Communications. 5761–5763. doi:10.1039/b810248a

  23. Zhou W-H, Tang S-F, Yao Q-H, Chen F-R, Yang H-H, Wang X-R (2010) A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens Bioelectron 26:585–589. doi:10.1016/j.bios.2010.07.024

    Article  CAS  Google Scholar 

  24. Orata D, Buttry DA (1987) Determination of ion populations and solvent content as functions of redox state and pH in polyaniline. J Am Chem Soc 109(12):3574–3581. doi:10.1021/ja00246a013

    Article  CAS  Google Scholar 

  25. Valério E, Abrantes LM, Viana AS (2008) 4-Aminothiophenol self-assembled monolayer for the development of a DNA biosensor aiming the detection of cylindrospermopsin producing cyanobacteria. Electroanalysis 20:2467–2474. doi:10.1002/elan.200804350

    Article  Google Scholar 

  26. Sabatani E, Cohen-Boulakia J, Bruening M, Rubinstein I (1993) Thioaromatic monolayers on gold: a new family of self—assembling monolayers. Langmuir 9:2974–2981

    Article  CAS  Google Scholar 

  27. Buttry DA, Ward MD (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 92(6):1355–1379. doi:10.1021/cr00014a006

    Article  CAS  Google Scholar 

  28. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  29. Shea KJ, Spivak DA, Sellergren B (1993) Polymer complements to nucleotide bases—selective binding of adenine-derivatives to imprinted polymers. J Am Chem Soc 115(8):3368–3369

    Article  CAS  Google Scholar 

  30. Freundlich H (1906) Over the adsorption in solution. Z Phys Chem 57:385–471

    CAS  Google Scholar 

  31. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16(5):490–495

    Article  CAS  Google Scholar 

  32. Umpleby RJ, Baxter SC, Chen YZ, Shah RN, Shimizu KD (2001) Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Anal Chem 73(19):4584–4591

    Article  CAS  Google Scholar 

  33. Umpleby RJ, Baxter SC, Rampey AM, Rushton GT, Chen YZ, Shimizu KD (2004) Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B 804(1):141–149. doi:10.1016/j.jchromb.2004.01.064

    Article  CAS  Google Scholar 

  34. Muhammad T, Nur Z, Piletska EV, Yimit O, Piletsky SA (2012) Rational design of molecularly imprinted polymer: the choice of cross-linker. Analyst 137(11):2623–2628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Estonian Ministry of Education and Research (grant PUT150) and the Estonian Science Foundation (grant ETF8249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitali Syritski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.38 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretjakov, A., Syritski, V., Reut, J. et al. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta 180, 1433–1442 (2013). https://doi.org/10.1007/s00604-013-1039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1039-y

Keywords