Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg · mL−1 if detected visually, and of 30 pg · mL−1 via instrumental detection. This is significantly lower than the LOD of 2 ng · mL−1 achieved by conventional lateral flow analysis using the same reagents.

Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Farrell B (2009) Evolution in Lateral Flow–Based Immunoassay Systems. (In book “Lateral Flow Immunoassay”). In: Wong R, Tse H (eds). Humana Press, pp 1–33. doi:10.1007/978-1-59745-240-3_1

  2. Ngom B, Guo Y, Wang X, Bi D (2010) Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem 397(3):1113–1135. doi:10.1007/s00216-010-3661-4

    Article  CAS  Google Scholar 

  3. Posthuma-Trumpie G, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Anal Bioanal Chem 393(2):569–582. doi:10.1007/s00216-008-2287-2

    Article  CAS  Google Scholar 

  4. Anfossi L, Baggiani C, Giovannoli C, D’Arco G, Giraudi G (2013) Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem 405(2–3):467–480. doi:10.1007/s00216-012-6033-4

    Article  CAS  Google Scholar 

  5. Wang S, Zhang C, Zhang Y (2009) Lateral Flow Colloidal Gold-Based Immunoassay for Pesticide. In: Rasooly A, Herold K (eds) Biosensors and Biodetection, vol 504. Methods in Molecular Biology™. Humana Press, pp 237–252. doi:10.1007/978-1-60327-569-9_15

  6. Ryu Y, Jin Z, Kang M, Kim H-S (2011) Increase in the detection sensitivity of a lateral flow assay for a cardiac marker by oriented immobilization of antibody. BioChip J 5(3):193–198. doi:10.1007/s13206-011-5301-2

    Article  CAS  Google Scholar 

  7. Chun P (2009) Colloidal Gold and Other Labels for Lateral Flow Immunoassays. In: Wong R, Tse H (eds) Lateral Flow Immunoassay. Humana Press, pp 1–19. doi:10.1007/978-1-59745-240-3_5

  8. Rapid lateral flow test strips. Considerations for product development (2002). Millipore Corp, Bedford

  9. Byzova NA, Zvereva EA, Zherdev AV, Dzantiev BB (2011) Immunochromatographic technique for express determination of ampicillin in milk and dairy products. Appl Biochem Microbiol 47(6):627–634. doi:10.1134/S0003683811060032

    Article  CAS  Google Scholar 

  10. Chandler J, Gurmin T, Robinson N (2000) The place of gold in rapid tests. IVD Technol 6:37–49

    Google Scholar 

  11. Chen H, Liu F, Koh K, Lee J, Ye Z, Yin T, Sun L (2013) Sensitive detection of tuberculosis using nanoparticle-enhanced surface plasmon resonance. Microchim Acta 180(5–6):431–436. doi:10.1007/s00604-013-0943-5

    Article  CAS  Google Scholar 

  12. Huang K-J, Li J, Liu Y-M, Cao X, Yu S, Yu M (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchim Acta 177(3–4):419–426. doi:10.1007/s00604-012-0805-6

    Article  CAS  Google Scholar 

  13. Li Y, Yuan R, Chai Y, Zhuo Y, Su H, Zhang Y (2014) Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim Acta 181(5–6):679–685. doi:10.1007/s00604-014-1179-8

    Article  CAS  Google Scholar 

  14. Urusov AE, Kostenko SN, Sveshnikov PG, Zherdev AV, Dzantiev BB (2011) Immunochromatographic assay for the detection of ochratoxin A. J Anal Chem 66(8):770–776. doi:10.1134/s1061934811080144

    Article  CAS  Google Scholar 

  15. Xiong P, Gan N, Cui H, Zhou J, Cao Y, Hu F, Li T (2014) Incubation-free electrochemical immunoassay for diethylstilbestrol in milk using gold nanoparticle-antibody conjugates for signal amplification. Microchim Acta 181(3–4):453–462. doi:10.1007/s00604-013-1131-3

    Article  CAS  Google Scholar 

  16. Anfossi L, Baggiani C, Giovannoli C, Biagioli F, D’Arco G, Giraudi G (2013) Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk. Anal Chim Acta 772:75–80. doi:http://dx.doi.org/10.1016/j.aca.2013.02.020

  17. Hermanson GT (2007) Chapter 24 - Preparation of Colloidal Gold-Labeled Proteins, 2nd edn, Bioconjugate Techniques. Academic, New York, pp 924–935. doi:10.1016/B978-0-12-370501-3.00024-2

    Google Scholar 

  18. Battilani P, Barbano C, Logrieco A (2008) Chapter 1 - Risk Assessment and Safety Evaluation of Mycotoxins in Fruits. In: Rivka B-G, Nachman P (eds) Mycotoxins in Fruits and Vegetables. Academic, San Diego, pp 1–26. doi:10.1016/B978-0-12-374126-4.00001-2

    Chapter  Google Scholar 

  19. Sauceda-Friebe JC, Karsunke XYZ, Vazac S, Biselli S, Niessner R, Knopp D (2011) Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal Chim Acta 689(2):234–242. doi:10.1016/j.aca.2011.01.030

    Article  CAS  Google Scholar 

  20. Krska R, Molinelli A (2009) Rapid test strips for analysis of mycotoxins in food and feed. Anal Bioanal Chem 393(1):67–71. doi:10.1007/s00216-008-2424-y

    Article  CAS  Google Scholar 

  21. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat (Lond), Phys Sci 241(105):20–22

    Article  CAS  Google Scholar 

  22. Tijssen P (1985) Practice and Theory of Enzyme Immunoassays. Science, Elsevier

    Google Scholar 

  23. Sitta Sittampalam G, Smith WC, Miyakawa TW, Smith DR, McMorris C (1996) Application of experimental design techniques to optimize a competitive ELISA. J Immunol Methods 190(2):151–161. doi:10.1016/0022-1759(95)00262-6

    Article  Google Scholar 

  24. Wang S, Quan Y, Lee N, Kennedy IR (2006) Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54(7):2491–2495. doi:10.1021/jf0530401

    Article  CAS  Google Scholar 

  25. Yang H, Li D, He R, Guo Q, Wang K, Zhang X, Huang P, Cui D (2010) A novel quantum dots-based point of care test for syphilis. Nanoscale Res Lett 5(5):875–881. doi:10.1007/s11671-010-9578-1

    Article  CAS  Google Scholar 

  26. Chuanlai X, Huting W, Chifang P, Zhengyu J, Liqiang L (2006) Colloidal gold-based immunochromatographic assay for detection of diethylstilbestrol residues. Biomed Chromatogr 20(12):1390–1394. doi:10.1002/bmc.714

    Article  Google Scholar 

  27. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. doi:10.1021/cr030698

    Article  Google Scholar 

  28. Urusov AE, Kostenko SN, Sveshnikov PG, Zherdev AV, Dzantiev BB (2011) Ochratoxin A immunoassay with surface plasmon resonance registration: Lowering limit of detection by the use of colloidal gold immunoconjugates. Sensors Actuators B Chem 156(1):343–349. doi:10.1016/j.snb.2011.04.044

    Article  CAS  Google Scholar 

  29. Chiao D-J, Shyu R-H, Hu C-S, Chiang H-Y, Tang S-S (2004) Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J Chromatogr B 809(1):37–41. doi:10.1016/j.jchromb.2004.05.033

    Article  CAS  Google Scholar 

  30. Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, Shin Y-B, Kim M-G (2010) A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron 25(8):1999–2002. doi:10.1016/j.bios.2010.01.019

    Article  CAS  Google Scholar 

  31. Linares EM, Kubota LT, Michaelis J, Thalhammer S (2012) Enhancement of the detection limit for lateral flow immunoassays: Evaluation and comparison of bioconjugates. J Immunol Methods 375(1–2):264–270. doi:10.1016/j.jim.2011.11.003

    Article  CAS  Google Scholar 

  32. Blazkova M, Rauch P, Fukal L (2010) Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron 25(9):2122–2128. doi:10.1016/j.bios.2010.02.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 10-03-00990, 11-08-93968, 12-08-01303, 13-04-90479) and the Federal Target Program “Scientific and scientific-pedagogical personnel of the innovative Russia” for 2009–2013 (agreement 8284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urusov, A.E., Zherdev, A.V. & Dzantiev, B.B. Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1. Microchim Acta 181, 1939–1946 (2014). https://doi.org/10.1007/s00604-014-1288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1288-4

Keywords