Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This paper reports on a sensitive and selective electrochemical sensor for lactic acid. The sensor is based on molecularly imprinted polymers (MIP), obtained on glassy carbon electrode (GCE) modified with reduced graphene oxide and gold nanoparticles. The MIP was obtained by electropolymerization of the o-phenylenediamine (o-PD) on the modified surface of the GCE in the presence of lactic acid. The steps involving the GCE modification and MIP construction were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy and atomic force microscopy. The results were evaluated using differential pulse voltammetry, using the hexacyanoferrate redox system as an electrochemical probe. Under optimized experimental conditions, the imprinted sensor has a linear response in the 0.1 nM to 1.0 nM lactic acid concentration range, with detection limit of 0.09 nM. The sensor exhibits excellent selectivity in the presence of molecules of similar chemical structure. It was applied for the selective determination of lactic acid in sugarcane vinasse. The recovery values ranged from 97.7 to 104.8%.

Schematic representation for MIP/AuNP/RGO/GCE sensor, obtained by electropolymerization of o-phenylediamine (o-PD) on a surface modified with gold nanoparticles (AuNPs) and reduced graphene oxide (RGO). These materials allowed the construction of a MIP-sensor with good selectivity for lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andres F, Martinez C, Marcos E et al (2013) Lactic acid properties , applications and production : a review. Trends Food Sci Technol 30:70–83. https://doi.org/10.1016/j.tifs.2012.11.007

    Article  CAS  Google Scholar 

  2. Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939. https://doi.org/10.1016/j.biotechadv.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  3. Alves R, Oliveira D, Komesu A et al (2018) Challenges and opportunities in lactic acid bioprocess design — from economic to production aspects. Biochem Eng J 133:219–239. https://doi.org/10.1016/j.bej.2018.03.003

    Article  CAS  Google Scholar 

  4. Vargas E, Ruiz MA, Campuzano S et al (2016) Implementation of a new integrated D -lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples. Talanta 152:147–154. https://doi.org/10.1016/j.talanta.2016.01.063

    Article  CAS  PubMed  Google Scholar 

  5. Ismail E, Khaneghah AM, Barba FJ et al (2018) Recent advancements in lactic acid production - a review. Food Res Int 107:763–770. https://doi.org/10.1016/j.foodres.2018.01.001

    Article  CAS  Google Scholar 

  6. Castro-aguirre E, Iñiguez-franco F, Samsudin H et al (2016) Poly (lactic acid) — mass production , processing , industrial applications , and end of life ☆. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Stre M, Greif G, Sturdík E (2012) A rapid method for determination of L -lactic acid in real samples by amperometric biosensor utilizing nanocomposite. Food Control 23:238–244. https://doi.org/10.1016/j.foodcont.2011.07.021

    Article  CAS  Google Scholar 

  8. Shimomura T, Sumiya T, Ono M, Itoh T (2012) An electrochemical biosensor for the determination of lactic acid in expiration. Procedia Chem 6:46–51. https://doi.org/10.1016/j.proche.2012.10.129

    Article  CAS  Google Scholar 

  9. Xiao Y, Li Y, Ying J et al (2015) Determination of alditols by capillary electrophoresis with indirect laser-induced fluorescence detection. Food Chem 174:233–239. https://doi.org/10.1016/j.foodchem.2014.11.046

    Article  CAS  PubMed  Google Scholar 

  10. Liang P, Sun M, He P et al (2016) Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene – cobalt microsphere hybrid paste electrodes. Food Chem 190:64–70. https://doi.org/10.1016/j.foodchem.2015.05.059

    Article  CAS  PubMed  Google Scholar 

  11. Molnar-Perl I (1999) Simultaneous quantitation of acids and sugars by chromatography : gas or high-performance liquid chromatography ? J Chromatogr A 845:181–195

    Article  CAS  Google Scholar 

  12. Medeiros PM, Simoneit BRT (2007) Analysis of sugars in environmental samples by gas chromatography – mass spectrometry. J Chromatogr A 1141:271–278. https://doi.org/10.1016/j.chroma.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  13. Casella IG, Gatta M, Desimoni E (1998) Applications of a copper-modified gold electrode for amperometric detection of polar aliphatic compounds by anion-exchange chromatography. J Chromatogr A 814:63–70

    Article  CAS  Google Scholar 

  14. Hanko VP, Rohrer JS (2000) Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed Amperometric detection. Anal Biochem 283(199):192–199. https://doi.org/10.1006/abio.2000.4653

    Article  CAS  PubMed  Google Scholar 

  15. Cm M, Sk A, Fleming SC et al (1990) Rapid and simultaneous determination of lactulose and mannitol in urine , by HPLC pulsed Amperometric detection , for use in studies of intestinal permeability with. Clin Chem 36:797–799

    Google Scholar 

  16. Kim S, Kim K, Kim H et al (2018) Non-enzymatic electrochemical lactate sensing by NiO and Ni ( OH ) 2 electrodes : a mechanistic investigation. Electrochim Acta 276:240–246. https://doi.org/10.1016/j.electacta.2018.04.172

    Article  CAS  Google Scholar 

  17. Ibupoto ZH, Muhammad S, Ali U et al (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO Nanorods with lactate oxidase. Sensors 12:2456–2466. https://doi.org/10.3390/s120302456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazzei F, Botrè F, Favero G (2007) Peroxidase based biosensors for the selective determination of D, L-lactic acid and L-malic acid in wines. Microchem J 87:81–86. https://doi.org/10.1016/j.microc.2007.05.009

    Article  CAS  Google Scholar 

  19. Pariente F, Lorenzo E (2006) Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal Chim Acta 555:308–315. https://doi.org/10.1016/j.aca.2005.09.025

    Article  CAS  Google Scholar 

  20. Gamero M, Pariente F, Lorenzo E, Alonso C (2010) Biosensors and bioelectronics nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens Bioelectron 25:2038–2044. https://doi.org/10.1016/j.bios.2010.01.032

    Article  CAS  PubMed  Google Scholar 

  21. Romero MR, Garay F, Baruzzi AM (2008) Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sensors Actuators B Chem 131:590–595. https://doi.org/10.1016/j.snb.2007.12.044

    Article  CAS  Google Scholar 

  22. Suman S, Singhal R, Sharma AL et al (2005) Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sensors Actuators B Chem 107:768–772. https://doi.org/10.1016/j.snb.2004.12.016

    Article  CAS  Google Scholar 

  23. Chen L, Wang X, Lu W, Wu X, Li J (2016) As featured in: molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/C6CS00061D

    Article  CAS  PubMed  Google Scholar 

  24. Sharma PS, Pietrzyk-le A (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204. https://doi.org/10.1007/s00216-011-5696-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malitesta C (1827–1846) Mazzotta E (2012) MIP sensors – the electrochemical approach. Anal Bioanal Chem. https://doi.org/10.1007/s00216-011-5405-5

    Article  PubMed  Google Scholar 

  26. Vanossi D, Pigani L, Seeber R et al (2013) Electropolymerization of ortho-phenylenediamine. Structural characterisation of the resulting polymer film and its interfacial capacitive behaviour. J Electroanal Chem 710:22–28. https://doi.org/10.1016/j.jelechem.2013.04.028

    Article  CAS  Google Scholar 

  27. Alizadeh T, Nayeri S, Mirzaee S (2019) A high performance potentiometric sensor for lactic acid determination based on molecularly imprinted polymer / MWCNTs / PVC nanocomposite fi lm covered carbon rod electrode. Talanta 192:103–111. https://doi.org/10.1016/j.talanta.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  28. Luiz J, Beluomini MA, Sedenho GC, Stradiotto NR (2017) Determination of amino acids in sugarcane vinasse by ion chromatographic using nickel nanoparticles on reduced graphene oxide modi fi ed electrode ☆. Microchem J 134:374–382

    Article  Google Scholar 

  29. Beluomini MA, Silva JL, Sedenho GC, Stradiotto NR (2017) D -mannitol sensor based on molecularly imprinted polymer on electrode modi fi ed with reduced graphene oxide decorated with gold nanoparticles. Talanta 165:231–239. https://doi.org/10.1016/j.talanta.2016.12.040

    Article  CAS  PubMed  Google Scholar 

  30. Ariffin AA, O’Neill RD, Yahya MZA, Zain ZM (2012) Electropolymerization of ortho-phenylenediamine and its use for detection on hydrogen peroxide and ascorbic acid by electrochemical impedance spectroscopy. Int J Electrochem Sci 7:10154–10163

    CAS  Google Scholar 

  31. Fall M, Diagne AA, Dieng MM et al (2005) Electrochemical impedance spectroscopy of poly(3-methoxythiophene) thin films in aqueous LiClO4solutions. Synth Met 155:569–575. https://doi.org/10.1016/j.synthmet.2005.09.043

    Article  CAS  Google Scholar 

  32. Karimian N, Vagin M, Hossein M et al (2013) Biosensors and bioelectronics an ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens Bioelectron 50:492–498. https://doi.org/10.1016/j.bios.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  33. Kor K, Zarei K (2016) Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. Talanta 146:181–187. https://doi.org/10.1016/j.talanta.2015.08.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) process n° 40878783/2018-4 and São Paulo Research Foundation (FAPESP) process n° 2017/25329-6 for the financial support granted in the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thulio César Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.03 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, T.C., Stradiotto, N.R. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles. Microchim Acta 186, 764 (2019). https://doi.org/10.1007/s00604-019-3898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3898-3

Keywords