Abstract
Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties. LIG can be easily produced by single-step laser scribing at normal room temperature and pressure using easily accessible commercial level laser machines and materials. With the increasing demand for novel wearable devices for biomedical applications, LIG on flexible substrates can readily serve as a technological platform to be further developed for biomedical applications such as point-of-care (POC) testing and wearable devices for healthcare monitoring system. This review will provide a comprehensive grounding on LIG from its inception and fabrication mechanism to the characterization of its key functional properties. The exploration of biomedicals applications in the form of wearable and point-of-care devices will then be presented. Issue of health risk from accidental exposure to LIG will be covered. Then LIG-based wearable devices will be compared to devices of different materials. Finally, we discuss the implementation of Internet of Medical Things (IoMT) to wearable devices and explore and speculate on its potentials and challenges.
Graphical abstract
Similar content being viewed by others
References
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849
Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW et al (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708. https://doi.org/10.1021/NL080649I
Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446. https://doi.org/10.1021/NL801412Y/ASSET/IMAGES/NL-2008-01412Y_M003.GIF
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/NL0731872/ASSET/IMAGES/LARGE/NL-2007-031872_0004.JPEG
Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823. https://doi.org/10.1038/NATURE08105
Punith Kumar MK, Laxmeesha PM, Ray S, Srivastava C (2020) Enhancement in the corrosion resistance of nanocrystalline aluminium coatings by incorporation of graphene oxide. Appl Surf Sci 533:147512. https://doi.org/10.1016/J.APSUSC.2020.147512
Ghamkhari A, Abbaspour-Ravasjani S, Talebi M, Hamishehkar H, Hamblin MR (2021) Development of a graphene oxide-poly lactide nanocomposite as a smart drug delivery system. Int J Biol Macromol 169:521–531. https://doi.org/10.1016/J.IJBIOMAC.2020.12.084
Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms6714
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. https://doi.org/10.1073/PNAS.0502848102
Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. https://doi.org/10.1038/nnano.2008.329
Ramachandran R, Felix S, Joshi GM, Raghupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48:3834–3842. https://doi.org/10.1016/J.MATERRESBULL.2013.05.085
Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda KI, Mizuno S (2012) Epitaxial Growth of Large-Area Single-Layer Graphene over Cu(1 1 1)/Sapphire by Atmospheric Pressure CVD. Carbon 50:57–65. https://doi.org/10.1016/J.CARBON.2011.08.002
Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554. https://doi.org/10.1021/NL201566C/SUPPL_FILE/NL201566C_SI_001.PDF
Park S, Hu Y, Hwang JO, Lee ES, Casabianca LB, Cai W, Potts JR, Ha HW, Chen S, Oh J et al (2012) Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun 3:1–8. https://doi.org/10.1038/ncomms1643
Yang W, Zhao W, Li Q, Li H, Wang Y, Li Y, Wang G (2020) Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl Mater Interfaces 12:3928–3935. https://doi.org/10.1021/ACSAMI.9B17467
Singh SP, Ramanan S, Kaufman Y, Arnusch CJ (2018) Laser-induced graphene biofilm inhibition: texture does matter. ACS Appl Nano Mater 1:1713–1720. https://doi.org/10.1021/ACSANM.8B00175/ASSET/IMAGES/LARGE/AN-2018-001753_0006.JPEG
Ge L, Hong Q, Li H, Liu C, Li F (2019) Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:1904000. https://doi.org/10.1002/ADFM.201904000
Lamberti A, Serrapede M, Ferraro G, Fontana M, Perrucci F, Bianco S, Chiolerio A, Bocchini S (2017) All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater 4:035012. https://doi.org/10.1088/2053-1583/AA790E
Jeong SY, Ma YW, Lee JU, Je GJ, Shin BS (2019) Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 19:4867. https://doi.org/10.3390/S19224867
Li G (2020) Direct laser writing of graphene electrodes. J Appl Phys 127:010901. https://doi.org/10.1063/1.5120056
Bressi AC, Dallinger A, Steksova Y, Greco F (2023) Bioderived laser-induced graphene for sensors and supercapacitors. ACS Appl Mater Interfaces 15:35788–35814. https://doi.org/10.1021/ACSAMI.3C07687/ASSET/IMAGES/LARGE/AM3C07687_0012.JPEG
Inagaki M, Harada S, Sato T, Nakajima T, Horino Y, Morita K (1989) Carbonization of polyimide film “Kapton.” Carbon 27:253–257. https://doi.org/10.1016/0008-6223(89)90131-0
Yan W, Yan W, Chen T, Xu J, Tian Q, Ho D (2020) Size-tunable flowerlike MoS2nanospheres combined with laser-induced graphene electrodes for NO2sensing. ACS Appl Nano Mater 3:2545–2553. https://doi.org/10.1021/ACSANM.9B02614/SUPPL_FILE/AN9B02614_SI_001.PDF
Bauer M, Wunderlich L, Weinzierl F, Lei Y, Duerkop A, Alshareef HN, Baeumner AJ (2021) Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem 413:763–777. https://doi.org/10.1007/S00216-020-02939-4/TABLES/2
Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman SC, Xuan X, Kim J, Park JY (2020) A Chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens Actuators B Chem 311:127866. https://doi.org/10.1016/J.SNB.2020.127866
Stanford MG, Zhang C, Fowlkes JD, Hoffman A, Ivanov IN, Rack PD, Tour JM (2020) High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl Mater Interfaces 12:10902–10907. https://doi.org/10.1021/ACSAMI.0C01377/SUPPL_FILE/AM0C01377_SI_002.MP4
Tao LQ, Wang DY, Tian H, Ju ZY, Liu Y, Pang Y, Chen YQ, Yang Y, Ren TL (2017) Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 9:8266–8273. https://doi.org/10.1039/C7NR01862B
Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H et al (2019) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38:217–224. https://doi.org/10.1038/s41587-019-0321-x
Rahimi R, Ochoa M, Yu W, Ziaie B (2015) Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces 7:4463–4470. https://doi.org/10.1021/AM509087U/SUPPL_FILE/AM509087U_SI_001.PDF
Xuan X, Kim JY, Hui X, Das PS, Yoon HS, Park JY (2018) A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens Bioelectron 120:160–167. https://doi.org/10.1016/j.bios.2018.07.071
de Araujo WR, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC (2017) Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices. Angew Chem 129:15309–15313. https://doi.org/10.1002/ANGE.201708527
Zhang Z, Song M, Hao J, Wu K, Li C, Hu C (2018) Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127:287–296. https://doi.org/10.1016/J.CARBON.2017.11.014
Yang S, Ling Y, Wu Q, Zhang H, Yan Z, Huang G, Lin J, Wan C (2022) Lignin-derived porous graphene for wearable and ultrasensitive strain sensors. J Mater Chem C Mater 10:11730–11738. https://doi.org/10.1039/D2TC00953F
Ye R, Chyan Y, Zhang J, Li Y, Han X, Kittrell C, Tour JM (2017) Laser-induced graphene formation on wood. Adv Mater 29:1702211. https://doi.org/10.1002/ADMA.201702211
van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153. https://doi.org/10.1016/J.CHEMOSPHERE.2012.03.067
Jung Y, Min JK, Choi J, Bang J, Jeong S, Pyun KR, Ahn J, Cho Y, Hong S, Hong S et al (2022) Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl Mater Today 29:101589. https://doi.org/10.1016/J.APMT.2022.101589
Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12:2176–2183. https://doi.org/10.1021/ACSNANO.7B08539
Xu B, Zheng M, Tang H, Chen L, Liu Y, Zhao Y, Silvestre SL, Pinheiro T, Marques AC et al (2022) Cork derived laser-induced graphene for sustainable green electronics. Flex Print Electron 7:035021. https://doi.org/10.1088/2058-8585/AC8E7B
Zhao P, Bhattacharya G, Fishlock SJ, Guy JGM, Kumar A, Tsonos C, Yu Z, Raj S, McLaughlin JA, Luo J et al (2020) Replacing the metal electrodes in triboelectric nanogenerators: high-performance laser-induced graphene electrodes. Nano Energy 75:104958. https://doi.org/10.1016/J.NANOEN.2020.104958
Kulyk B, Matos M, Silva BFR, Carvalho AF, Fernandes AJS, Evtuguin DV, Fortunato E, Costa FM (2022) Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diam Relat Mater 123:108855. https://doi.org/10.1016/J.DIAMOND.2022.108855
Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim YJ (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf-Green Tech 4:307–322. https://doi.org/10.1007/S40684-017-0037-7/METRICS
Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ (2019) Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 591:117322. https://doi.org/10.1016/J.MEMSCI.2019.117322
Lei Y, Alshareef AH, Zhao W, Inal S (2020) Laser-scribed graphene electrodes derived from lignin for biochemical sensing. ACS Appl Nano Mater 3:1166–1174. https://doi.org/10.1021/ACSANM.9B01795/ASSET/IMAGES/MEDIUM/AN9B01795_M003.GIF
Zhang Y, Zhu H, Sun P, Sun C, Huang H, Guan S, Liu H, Zhang H, Zhang C, Qin K (2019) Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 31:1334–1341. https://doi.org/10.1002/elan.201900043
Wagh MD, Sahoo SK, Goel S (2022) Laser-induced graphene ablated polymeric microfluidic device with interdigital electrodes for taste sensing application. Sens Actuators A Phys 333:113301. https://doi.org/10.1016/J.SNA.2021.113301
Zhu B, Yu L, Beikzadeh S, Zhang S, Zhang P, Wang L, Travas-Sejdic J (2021) Disposable and Portable Gold Nanoparticles Modified - Laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochim Acta 378:138132. https://doi.org/10.1016/J.ELECTACTA.2021.138132
Yen Y-H, Hsu C-S, Lei Z-Y, Wang H-J, Su C-Y, Dai C-L, Tsai Y, Yen Y-H, Hsu C-S, Lei Z-Y et al (2022) Laser-induced graphene stretchable strain sensor with vertical and parallel patterns. Micromachines 13:1220. https://doi.org/10.3390/MI13081220
Chen B, Johnson ZT, Sanborn D, Hjort RG, Garland NT, Soares RRA, Van Belle B, Jared N, Li J, Jing D et al (2022) Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 16:15–28. https://doi.org/10.1021/ACSNANO.1C04197/ASSET/IMAGES/MEDIUM/NN1C04197_M004.GIF
Nayak P, Kurra N, Xia C, Alshareef HN, Nayak P, Kurra N, Xia CN, Alshareef E (2016) Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv Electron Mater 2:1600185. https://doi.org/10.1002/AELM.201600185
Garland NT, McLamore ES, Cavallaro ND, Mendivelso-Perez D, Smith EA, Jing D, Claussen JC (2018) Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl Mater Interfaces 10:39124–39133. https://doi.org/10.1021/ACSAMI.8B10991/ASSET/IMAGES/LARGE/AM-2018-10991C_0007.JPEG
Carvalho AF, Fernandes AJS, Leitão C, Deuermeier J, Marques AC, Martins R, Fortunato E, Costa FM, Carvalho AF et al (2018) Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater 28:1805271. https://doi.org/10.1002/ADFM.201805271
Romero FJ, Salinas-Castillo A, Rivadeneyra A, Albrecht A, Godoy A, Morales DP, Rodriguez N (2018) In-depth study of laser diode ablation of Kapton polyimide for flexible conductive substrates. Nanomaterials 8:517. https://doi.org/10.3390/NANO8070517
Le Dinh T-S, Lee YA, Ku Nam H, Yeon Jang K, Yang D, Kim B, Yim K, Kim S-W, Yoon H, Kim Y-J et al (2022) Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv Funct Mater 32:2107768. https://doi.org/10.1002/ADFM.202107768
Duy LX, Peng Z, Li Y, Zhang J, Ji Y, Tour JM (2018) Laser-induced graphene fibers. Carbon 126:472–479. https://doi.org/10.1016/J.CARBON.2017.10.036
He M, Wang Y, Wang S, Luo S (2020) Laser-induced graphene enabled 1D fiber electronics. Carbon 168:308–318. https://doi.org/10.1016/J.CARBON.2020.06.084
Le TSD, Phan HP, Kwon S, Park S, Jung Y, Min J, Chun BJ, Yoon H, Ko SH, Kim SW et al (2022) Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater 32:2205158. https://doi.org/10.1002/ADFM.202205158
Faas S, Bielke U, Weber R, Graf T (2018) Prediction of the surface structures resulting from heat accumulation during processing with picosecond laser pulses at the average power of 420 W. Appl Phys A Mater Sci Process 124:1–9. https://doi.org/10.1007/S00339-018-2040-4/FIGURES/7
Le TSD, Park S, An J, Lee PS, Kim YJ (2019) Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater 29:1902771. https://doi.org/10.1002/ADFM.201902771
Smirnov VA, Arbuzov AA, Shul’ga YM, Baskakov SA, Martynenko VM, Muradyan VE, Kresova EI (2011) Photoreduction of graphite oxide. High Energy Chem 45:57–61. https://doi.org/10.1134/S0018143911010176/METRICS
Trusovas R, Ratautas K, Račiukaitis G, Niaura G (2019) Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation. Appl Surf Sci 471:154–161. https://doi.org/10.1016/J.APSUSC.2018.12.005
Kim T, Lee J, Lee KH (2016) Full graphitization of amorphous carbon by microwave heating. RSC Adv 6:24667–24674. https://doi.org/10.1039/C6RA01989G
Miyamoto Y, Zhang H, Tománek D (2010) Photoexfoliation of graphene from graphite: an ab initio study. Phys Rev Lett 104:208302. https://doi.org/10.1103/PHYSREVLETT.104.208302/FIGURES/3/MEDIUM
Khorkov KS, Kochuev DA, Ilin VA, Chkalov RV, Prokoshev VG, Arakelian SM (2018) Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen. J Phys Conf Ser 951:012014. https://doi.org/10.1088/1742-6596/951/1/012014
Huang L, Su J, Song Y, Ye R (2020) Laser-induced graphene: en route to smart sensing. Nanomicro Lett 12:1–17. https://doi.org/10.1007/S40820-020-00496-0/FIGURES/8
Kurra N, Jiang Q, Nayak P, Alshareef HN (2019) Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24:81–102. https://doi.org/10.1016/J.NANTOD.2018.12.003
Dong Y, Rismiller SC, Lin J (2016) Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 104:47–55. https://doi.org/10.1016/J.CARBON.2016.03.050
Cai J, Lv C, Watanabe A (2016) Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater 4:1671–1679. https://doi.org/10.1039/C5TA09450J
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541. https://doi.org/10.1126/SCIENCE.1200770
Ma J, Alfè D, Michaelides A, Wang E (2009) Stone-Wales defects in graphene and other planar s P2 -bonded materials. Phys Rev B Condens Matter Mater Phys 80:033407. https://doi.org/10.1103/PHYSREVB.80.033407/FIGURES/3/MEDIUM
Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ et al (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 3:1–9. https://doi.org/10.1038/ncomms2315
Yang W, Liu Y, Li Q, Wei J, Li X, Zhang Y, Liu J (2020) In situ formation of phosphorus-doped porous graphene via laser induction. RSC Adv 10:23953–23958. https://doi.org/10.1039/D0RA03363D
Peng Z, Ye R, Mann JA, Zakhidov D, Li Y, Smalley PR, Lin J, Tour JM (2015) Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9:5868–5875. https://doi.org/10.1021/ACSNANO.5B00436/SUPPL_FILE/NN5B00436_SI_001.PDF
Huang L, Liu Y, Ji LC, Xie YQ, Wang T, Shi WZ (2011) Pulsed laser assisted reduction of graphene oxide. Carbon 49:2431–2436. https://doi.org/10.1016/J.CARBON.2011.01.067
Wan Z, Nguyen NT, Gao Y, Li Q (2020) Laser induced graphene for biosensors. Sustain Mater Technol 25:e00205. https://doi.org/10.1016/J.SUSMAT.2020.E00205
Wang Z, Tan KK, Lam YC (2021) Electrical resistance reduction induced with CO2 laser single line scan of polyimide. Micromachines 12:227. https://doi.org/10.3390/MI12030227
Li Y, Luong DX, Zhang J, Tarkunde YR, Kittrell C, Sargunaraj F, Ji Y, Arnusch CJ, Tour JM (2017) Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29:1700496. https://doi.org/10.1002/ADMA.201700496
Tittle CM, Yilman D, Pope MA, Backhouse CJ, Tittle CM, Backhouse CJ, Yilman D, Pope MA (2018) Robust superhydrophobic laser-induced graphene for desalination applications. Adv Mater Technol 3:1700207. https://doi.org/10.1002/ADMT.201700207
Tiliakos A, Ceaus C, Iordache SM, Vasile E, Stamatin I (2016) Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. J Anal Appl Pyrolysis 121:275–286. https://doi.org/10.1016/J.JAAP.2016.08.007
Singh SP, Li Y, Be’Er A, Oren Y, Tour JM, Arnusch CJ (2017) Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interfaces 9:18238–18247. https://doi.org/10.1021/ACSAMI.7B04863/SUPPL_FILE/AM7B04863_SI_002.MPG
Barbhuiya, N.H.; Singh, S.P.; Makovitzki, A.; Narkhede, P.; Oren, Z.; Adar, Y.; Lupu, E.; Cherry, L.; Monash, A.; Arnusch, C.J. Virus inactivation in water using laser-induced graphene filters. Materials (Basel) 2021, 14, https://doi.org/10.3390/MA14123179.
Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ (2018) Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 12:289–297. https://doi.org/10.1021/ACSNANO.7B06263/ASSET/IMAGES/LARGE/NN-2017-06263H_0007.JPEG
Stanford MG, Li JT, Chen Y, Mchugh EA, Liopo A, Xiao H, Tour JM (2019) Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano 13:11912–11920. https://doi.org/10.1021/ACSNANO.9B05983/SUPPL_FILE/NN9B05983_SI_001.PDF
Say MG, Brooke R, Edberg J, Grimoldi A, Belaineh D, Engquist I, Berggren M (2020) Spray-coated paper supercapacitors. npj Flex Electron 4:1–7. https://doi.org/10.1038/s41528-020-0079-8
Brownson DAC, Varey SA, Hussain F, Haigh SJ, Banks CE (2014) Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6:1607–1621. https://doi.org/10.1039/C3NR05643K
Muzyka K, Xu G (2022) Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34:574–589. https://doi.org/10.1002/ELAN.202100425
Zhu J, Liu S, Hu Z, Zhang X, Yi N, Tang K, Dexheimer MG, Lian X, Wang Q, Yang J et al (2021) Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 193:113606. https://doi.org/10.1016/J.BIOS.2021.113606
Sun, B.; McCay, R.N.; Goswami, S.; Xu, Y.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018, 30, https://doi.org/10.1002/ADMA.201804327.
Zhang Q, Tan L, Chen Y, Zhang T, Wang W, Liu Z, Fu L, Zhang Q, Tan LF, Chen YX et al (2016) Human-like sensing and reflexes of graphene-based films. Adv Sci 3:1600130. https://doi.org/10.1002/ADVS.201600130
Liu J, Ji H, Lv X, Zeng C, Li H, Li F, Qu B, Cui F, Zhou Q (2022) Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchim Acta 189:1–14. https://doi.org/10.1007/S00604-021-05157-6/FIGURES/9
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C (2022) End-to-end design of wearable sensors. Nat Rev Mater 7:887–907. https://doi.org/10.1038/s41578-022-00460-x
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A (2024) Challenges and advances of hydrogel-based wearable electrochemical biosensors for real-time monitoring of biofluids: from lab to market. A Review. Anal Chem. https://doi.org/10.1021/ACS.ANALCHEM.3C03942
Khan A, Haque MN, Kabiraz DC, Yeasin A, Rashid HA, Sarker AC, Hossain G (2023) A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Sens Actuators A Phys 350:114093. https://doi.org/10.1016/J.SNA.2022.114093
Zhang Q, Ma S, Zhan X, Meng W, Wang H, Liu C, Zhang T, Zhang K, Su S (2024) Smartphone-based wearable microfluidic electrochemical sensor for on-site monitoring of copper ions in sweat without external driving. Talanta 266:125015. https://doi.org/10.1016/J.TALANTA.2023.125015
Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ et al (2017) An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms14579
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z (2021) Laser-induced graphene for bioelectronics and soft actuators. Nano Res 14:3033. https://doi.org/10.1007/S12274-021-3441-9
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM, Carvalho AF, Kulyk B, Costa FM, Fortunato E (2022) A review on the applications of graphene in mechanical transduction. Adv Mater 34:2101326. https://doi.org/10.1002/ADMA.202101326
Sindhu B, Kothuru A, Sahatiya P, Goel S, Nandi S (2021) Laser-induced graphene printed wearable flexible antenna-based strain sensor for wireless human motion monitoring. IEEE Trans Electron Devices 68:3189–3194. https://doi.org/10.1109/TED.2021.3067304
Yoon H, Lee K, Shin H, Jeong S, Lee YJ, Yang S, Lee SH, Yoon H, Lee K, Shin H et al (2023) In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor. Adv Funct Mater 33:2300322. https://doi.org/10.1002/ADFM.202300322
Guo W, Xia Y, Zhu Y, Han S, Li Q, Wang X (2023) Laser-induced graphene based triboelectric nanogenerator for accurate wireless control and tactile pattern recognition. Nano Energy 108:108229. https://doi.org/10.1016/J.NANOEN.2023.108229
Dallinger A, Keller K, Fitzek H, Greco F (2020) Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl Mater Interfaces 12:19855–19865. https://doi.org/10.1021/ACSAMI.0C03148/ASSET/IMAGES/MEDIUM/AM0C03148_M005.GIF
Huang L, Liu Y, Li G, Song Y, Su J, Cheng L, Guo W, Zhao G, Shen H, Yan Z et al (2023) Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett 23:597–605. https://doi.org/10.1021/ACS.NANOLETT.2C04228/SUPPL_FILE/NL2C04228_SI_005.MP4
Zhang C, Xie Y, Deng H, Tumlin T, Zhang C, Su J-W, Yu P, Lin J, Zhang C, Xie YC et al (2017) Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 13:1604197. https://doi.org/10.1002/SMLL.201604197
Xu Y, Sun B, Ling Y, Fei Q, Chen Z, Li X, Guo P, Jeon N, Goswami S, Liao Y et al (2020) Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc Natl Acad Sci USA 117:205–213. https://doi.org/10.1073/PNAS.1917762116/SUPPL_FILE/PNAS.1917762116.SM04.MP4
Wang Q, Li Y, Xu Q, Yu H, Zhang D, Zhou Q, Dhakal R, Li Y, Yao Z (2023) Finger–coding intelligent human–machine interaction system based on all–fabric ionic capacitive pressure sensors. Nano Energy 116:108783. https://doi.org/10.1016/J.NANOEN.2023.108783
Huang X, Cheng H, Chen K, Zhang Y, Zhang Y, Liu Y, Zhu C, Ouyang SC, Kong GW, Yu C et al (2013) Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans Biomed Eng 60:2848–2857. https://doi.org/10.1109/TBME.2013.2264879
Zhu C, Tao LQ, Wang Y, Zheng K, Yu J, Xiandong L, Chen X, Huang Y (2020) Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem 325:128790. https://doi.org/10.1016/J.SNB.2020.128790
Wang H, Wang H, Wang Y, Su X, Wang C, Zhang M, Jian M, Xia K, Liang X, Lu H et al (2020) Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 14:3219–3226. https://doi.org/10.1021/ACSNANO.9B08638/SUPPL_FILE/NN9B08638_SI_003.MP4
Mamleyev ER, Heissler S, Nefedov A, Weidler PG, Nordin N, Kudryashov VV, Länge K, MacKinnon N, Sharma S (2019) Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex Electron 3:1–11. https://doi.org/10.1038/s41528-018-0047-8
Nah JS, Barman SC, Zahed MA, Sharifuzzaman M, Yoon H, Park C, Yoon S, Zhang S, Park JY (2021) A Wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens Actuators B Chem 329:129206. https://doi.org/10.1016/J.SNB.2020.129206
Kucherenko IS, Sanborn D, Chen B, Garland N, Serhan M, Forzani E, Gomes C, Claussen JC (2020) Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv Mater Technol 5:1901037. https://doi.org/10.1002/ADMT.201901037
Hui X, Xuan X, Kim J, Park JY (2019) A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim Acta 328:135066. https://doi.org/10.1016/J.ELECTACTA.2019.135066
Wan Z, Umer M, Lobino M, Thiel D, Nguyen NT, Trinchi A, Shiddiky MJA, Gao Y, Li Q (2020) Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar MiRNA detection. Carbon 163:385–394. https://doi.org/10.1016/J.CARBON.2020.03.043
Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens 2:616–620. https://doi.org/10.1021/ACSSENSORS.7B00066/ASSET/IMAGES/LARGE/SE-2017-000663_0007.JPEG
Chandra Barman S, Abu Zahed M, Sharifuzzaman M, Gyu Ko S, Yoon H, San Nah J, Xuan X, Yeong Park J, Barman SC, Zahed MA et al (2020) A polyallylamine anchored amine-rich laser-ablated graphene platform for facile and highly selective electrochemical IgG biomarker detection. Adv Funct Mater 30:1907297. https://doi.org/10.1002/ADFM.201907297
Beduk T, Beduk D, de Oliveira Filho JI, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Salama KN et al (2021) Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor. Anal Chem 93:8585–8594. https://doi.org/10.1021/ACS.ANALCHEM.1C01444/ASSET/IMAGES/LARGE/AC1C01444_0006.JPEG
Puetz P, Behrent A, Baeumner AJ, Wegener J (2020) Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens Actuators B Chem 321:128443. https://doi.org/10.1016/J.SNB.2020.128443
Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, Mclamore ES, Claussen JC, Gomes CL (2020) Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in Chicken Broth. ACS Sens 5:1900–1911. https://doi.org/10.1021/ACSSENSORS.9B02345/SUPPL_FILE/SE9B02345_SI_001.PDF
Shathi MA, Chen M, Khoso NA, Rahman MT, Bhattacharjee B (2020) Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Mater Des 193:108792. https://doi.org/10.1016/J.MATDES.2020.108792
Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N, Afroj S, Novoselov KS, Karim N, Tan S, Abdelkader AM (2020) Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv Funct Mater 30:2000293. https://doi.org/10.1002/ADFM.202000293
Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871. https://doi.org/10.1002/SMLL.200902066
Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411. https://doi.org/10.1038/nnano.2010.86
Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28:14110–14113. https://doi.org/10.1021/LA302750E/ASSET/IMAGES/LARGE/LA-2012-02750E_0004.JPEG
Bussy C, Ali-Boucetta H, Kostarelos K (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc Chem Res 46:692–701. https://doi.org/10.1021/AR300199E/ASSET/IMAGES/LARGE/AR-2012-00199E_0006.JPEG
Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025. https://doi.org/10.1016/J.BIOMATERIALS.2012.07.040
Guo R, Mao J, Yan LT (2013) Computer simulation of cell entry of graphene nanosheet. Biomaterials 34:4296–4301. https://doi.org/10.1016/J.BIOMATERIALS.2013.02.047
Li Y, Yuan H, Von Dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. https://doi.org/10.1073/PNAS.1222276110/SUPPL_FILE/SM03.AVI
Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B (2016) Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine 12:333–351. https://doi.org/10.1016/J.NANO.2015.11.011
Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464. https://doi.org/10.1039/C1NR10172B
Zhang D, Zhang Z, Liu Y, Chu M, Yang C, Li W, Shao Y, Yue Y, Xu R (2015) The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 68:100–113. https://doi.org/10.1016/J.BIOMATERIALS.2015.07.060
Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795. https://doi.org/10.1016/J.BIOMATERIALS.2013.01.001
Kucki M, Rupper P, Sarrieu C, Melucci M, Treossi E, Schwarz A, León V, Kraegeloh A, Flahaut E, Vázquez E et al (2016) Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale 8:8749–8760. https://doi.org/10.1039/C6NR00319B
Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, He Y, Shi J, Li W, Hu J et al (2013) Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater 5:e44. https://doi.org/10.1038/am.2013.7
Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW (2015) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89:1557–1568. https://doi.org/10.1007/S00204-014-1303-X/FIGURES/6
Schinwald A, Murphy F, Askounis A, Koutsos V, Sefiane K, Donaldson K, Campbell CJ (2014) Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology 8:824–832. https://doi.org/10.3109/17435390.2013.831502
Drasler B, Kucki M, Delhaes F, Buerki-Thurnherr T, Vanhecke D, Korejwo D, Chortarea S, Barosova H, Hirsch C, Petri-Fink A et al (2018) Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon 137:125–135. https://doi.org/10.1016/J.CARBON.2018.05.012
Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L et al (2024) First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat Nanotechnol 2024(3):1–10. https://doi.org/10.1038/s41565-023-01572-3
Liao KH, Lin YS, MacOsko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–2615. https://doi.org/10.1021/AM200428V/SUPPL_FILE/AM200428V_SI_001.PDF
Pelin M, Fusco L, León V, Martín C, Criado A, Sosa S, Vázquez E, Tubaro A, Prato M (2017) Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 7:1–12. https://doi.org/10.1038/srep40572
Pelin M, Fusco L, Martín C, Sosa S, Frontiñán-Rubio J, González-Domínguez JM, Durán-Prado M, Vázquez E, Prato M, Tubaro A (2018) Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale 10:11820–11830. https://doi.org/10.1039/C8NR02933D
Frontiñán-Rubio J, Victoria Gómez M, Martín C, González-Domínguez JM, Durán-Prado M, Vázquez E (2018) Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale 10:11604–11615. https://doi.org/10.1039/C8NR00897C
Fusco L, Garrido M, Martín C, Sosa S, Ponti C, Centeno A, Alonso B, Zurutuza A, Vázquez E, Tubaro A et al (2020) Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale 12:610–622. https://doi.org/10.1039/C9NR06815E
Murray R, Vaughan E, Zhao J, Gui J, Luo J, Hsieh C, Huang C-C, Su C-Y, Lamberti A et al (2020) Toxicity assessment of laser-induced graphene by zebrafish during development. J Phys: Mater 3:034008. https://doi.org/10.1088/2515-7639/AB9522
Wang ZG, Zhou R, Jiang D, Song JE, Xu Q, Si J, Chen YP, Zhou X, Gan L, Li JZ et al (2015) Toxicity of graphene quantum dots in zebrafish embryo. Biomed Environ Sci 28:341–351. https://doi.org/10.3967/BES2015.048
Manjunatha B, Park SH, Kim K, Kundapur RR, Lee SJ (2018) Pristine graphene induces cardiovascular defects in zebrafish (Danio rerio) embryogenesis. Environ Pollut 243:246–254. https://doi.org/10.1016/J.ENVPOL.2018.08.058
D’Amora M, Camisasca A, Lettieri S, Giordani S (2017) Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials 7:414. https://doi.org/10.3390/NANO7120414
Ma B, Chi J, Xu C, Ni Y, Zhao C, Liu H (2020) Wearable capillary microfluidics for continuous perspiration sensing. Talanta 212:120786. https://doi.org/10.1016/J.TALANTA.2020.120786
Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV (2021) Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens 6:1174–1186. https://doi.org/10.1021/ACSSENSORS.0C02446/ASSET/IMAGES/LARGE/SE0C02446_0007.JPEG
Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola e Silva AN, Rueda R, Brown C, Angnes L, Wang J et al (2022) Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 414:5411–5421. https://doi.org/10.1007/S00216-021-03865-9/FIGURES/4
Katseli V, Economou A, Kokkinos C (2021) Smartphone-addressable 3D-printed electrochemical ring for nonenzymatic self-monitoring of glucose in human sweat. Anal Chem 93:3331–3336. https://doi.org/10.1021/acs.analchem.0c05057
Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L (2012) A 3D printed dry electrode for ECG/EEG recording. Sens Actuators A Phys 174:96–102. https://doi.org/10.1016/J.SNA.2011.12.017
Nesaei S, Song Y, Wang Y, Ruan X, Du D, Gozen A, Lin Y (2018) Micro additive manufacturing of glucose biosensors: a feasibility study. Anal Chim Acta 1043:142–149. https://doi.org/10.1016/J.ACA.2018.09.012
Kim T, Yi Q, Hoang E, Esfandyarpour R (2021) A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv Mater Technol 6:2001021. https://doi.org/10.1002/ADMT.202001021
Shi G, Lowe SE, Teo AJT, Dinh TK, Tan SH, Qin J, Zhang Y, Zhong YL, Zhao H (2019) A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl Mater Today 16:482–492. https://doi.org/10.1016/J.APMT.2019.06.016
Votzke, C.; Daalkhaijav, U.; Mengue, Y.; Johnston, M.L. Highly-stretchable biomechanical strain sensor using printed liquid metal paste. 2018 IEEE Biomedical Circuits and Systems Conference, BioCAS 2018 - Proceedings 2018, https://doi.org/10.1109/BIOCAS.2018.8584671.
Lo LW, Shi H, Wan H, Xu Z, Tan X, Wang C (2020) Inkjet-printed soft resistive pressure sensor patch for wearable electronics applications. Adv Mater Technol 5:1900717. https://doi.org/10.1002/ADMT.201900717
Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA, Muth JT, Truby RL, Kolesky DB et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312. https://doi.org/10.1002/ADMA.201400334
Su X, Borayek R, Li X, Herng TS, Tian D, Lim GJH, Wang Y, Wu J, Ding J (2020) Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chem Eng J 389:124503. https://doi.org/10.1016/J.CEJ.2020.124503
Yin XY, Zhang Y, Cai X, Guo Q, Yang J, Wang ZL (2019) 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater Horiz 6:767–780. https://doi.org/10.1039/C8MH01398E
Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR (2015) Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans Biomed Circuits Syst 9:670–677. https://doi.org/10.1109/TBCAS.2015.2488582
Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017, 3, https://doi.org/10.1126/SCIADV.1701629/SUPPL_FILE/1701629_SM.PDF.
Chen X, Wang BC, Li H (2024) A privacy-preserving multi-factor authentication scheme for cloud-assisted IoMT with post-quantum security. J Inf Secur Appl 81:103708. https://doi.org/10.1016/J.JISA.2024.103708
Kammarchedu V, Butler D, Ebrahimi A (2022) A machine learning-based multimodal electrochemical analytical device based on EMoSx-LIG for multiplexed detection of tyrosine and uric acid in sweat and saliva. Anal Chim Acta 1232:340447. https://doi.org/10.1016/J.ACA.2022.340447
Ji J, Zhao W, Wang Y, Li Q, Wang G (2023) Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS Nano 17:20153–20166. https://doi.org/10.1021/ACSNANO.3C05838/ASSET/IMAGES/LARGE/NN3C05838_0006.JPEG
Li X, Dai HN, Wang Q, Imran M, Li D, Imran MA (2020) Securing Internet of Medical Things with friendly-jamming schemes. Comput Commun 160:431–442. https://doi.org/10.1016/J.COMCOM.2020.06.026
Ghubaish A, Salman T, Zolanvari M, Unal D, Al-Ali A, Jain R (2021) Recent Advances in the Internet-of-Medical-Things (IoMT) systems security. IEEE Internet Things J 8:8707–8718. https://doi.org/10.1109/JIOT.2020.3045653
Ahmed SF, Alam MSB, Afrin S, Rafa SJ, Rafa N, Gandomi AH (2024) Insights into Internet of Medical Things (IoMT): data fusion, security issues and potential solutions. Inf Fusion 102:102060. https://doi.org/10.1016/J.INFFUS.2023.102060
Zhang H, Li J, Wen B, Xun Y, Liu J (2018) Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet Things J 5:1550–1560. https://doi.org/10.1109/JIOT.2018.2792423
Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N, Mankodiya K (2018) Towards fog-driven IoT EHealth: promises and challenges of IoT in medicine and healthcare. Futur Gener Comput Syst 78:659–676. https://doi.org/10.1016/J.FUTURE.2017.04.036
Yaqoob T, Abbas H, Atiquzzaman M (2019) Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices-a review. IEEE Commun Surv Tutor 21:3723–3768. https://doi.org/10.1109/COMST.2019.2914094
Dwivedi R, Mehrotra D, Chandra S (2022) Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: a systematic review. J Oral Biol Craniofac Res 12:302–318. https://doi.org/10.1016/J.JOBCR.2021.11.010
Sasidharan, P.; Rajalakshmi, T.; Snekhalatha, U. Wearable cardiorespiratory monitoring device for heart attack prediction. Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019 2019, 54–57, https://doi.org/10.1109/ICCSP.2019.8698059.
López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, del Castillo MD, Serrano JI, Rocon E, Benito-León J (2019) Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci 401:37–42. https://doi.org/10.1016/J.JNS.2019.04.011
Lin, Q.; Xu, W.; Liu, J.; Khamis, A.; Hu, W.; Hassan, M.; Seneviratne, A. H2B: heartbeat-based secret key generation using piezo vibration sensors. IPSN 2019 - Proceedings of the 2019 Information Processing in Sensor Networks 2019, 265–276, https://doi.org/10.1145/3302506.3310406.
Lazazzera R, Belhaj Y, Carrault G (2019) A new wearable device for blood pressure estimation using photoplethysmogram. Sensors 19:2557. https://doi.org/10.3390/S19112557
Fitness tracking app Strava gives away location of secret US army bases | GPS | The Guardian Available online: https://www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases (accessed on 12 February 2024).
Seh AH, Zarour M, Alenezi M, Sarkar AK, Agrawal A, Kumar R, Khan RA (2020) Healthcare data breaches: insights and implications. Healthcare 8:133. https://doi.org/10.3390/HEALTHCARE8020133
Wearables and privacy: what you need to know - IEEE Transmitter Available online: https://transmitter.ieee.org/wearables-and-privacy-what-you-need-to-know/ (accessed on 12 February 2024).
Ogundoyin SO (2020) An autonomous lightweight conditional privacy-preserving authentication scheme with provable security for vehicular ad-hoc networks. Int J Comput Appl 42:196–211. https://doi.org/10.1080/1206212X.2018.1477320
Wei, S. A new digital signature scheme based on factoring and discrete logarithms. Progress on Cryptography 2004, 107–111, https://doi.org/10.1007/1-4020-7987-7_14.
Rabie OBJ, Selvarajan S, Hasanin T, Mohammed GB, Alshareef AM, Uddin M (2023) A full privacy-preserving distributed batch-based certificate-less aggregate signature authentication scheme for healthcare wearable wireless medical sensor networks (HWMSNs). Int J Inf Secur 23:51–80. https://doi.org/10.1007/S10207-023-00748-1/FIGURES/11
Clemente-Lopez D, de Rangel-Magdaleno JJ, Muñoz-Pacheco JM (2024) A lightweight chaos-based encryption scheme for IoT healthcare systems. Internet Things 25:101032. https://doi.org/10.1016/J.IOT.2023.101032
Blockchain in healthcare market demand forecast report, 2030 Available online: https://www.psmarketresearch.com/market-analysis/blockchain-in-healthcare-market (accessed on 18 February 2024).
Dilawar N, Rizwan M, Ahmad F, Akram S (2019) Blockchain: securing Internet of Medical Things (IoMT). Int J Adv Comput Sci Appl 10:82–89. https://doi.org/10.14569/IJACSA.2019.0100110
Ktari J, Frikha T, Ben Amor N, Louraidh L, Elmannai H, Hamdi M (2022) IoMT-based platform for e-health monitoring based on the blockchain. Electronics 11:2314. https://doi.org/10.3390/ELECTRONICS11152314
Gupta K, Gupta KD, Kumar D, Srivastava G, Sharma DK (2023) BIDS: blockchain and intrusion detection system coalition for securing Internet of Medical Things networks. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3325964
Acknowledgements
Dr. David Apps, Edinburgh Medical School, Edinburgh, Scotland, is thanked for his critical manuscript reading and language improvements.
Funding
The authors thank their institution and its kind sponsors from the industry and business section for general laboratory support, the VISTEC Postdoctoral Fellowship funding of Thana Thaweeskulchai and The Thailand Science Research and Innovation public funding agency, Grant No. 4368083, are acknowledged for funding through a grant within the Global Partnership Program.
Author information
Authors and Affiliations
Contributions
Conceptualization, literature search, original draft, review, and editing: T.T; literature search, original draft, and editing: K.S; funding, administration, and supervision: A.S.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Thaweeskulchai, T., Sakdaphetsiri, K. & Schulte, A. Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology. Microchim Acta 191, 292 (2024). https://doi.org/10.1007/s00604-024-06350-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00604-024-06350-z