Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties. LIG can be easily produced by single-step laser scribing at normal room temperature and pressure using easily accessible commercial level laser machines and materials. With the increasing demand for novel wearable devices for biomedical applications, LIG on flexible substrates can readily serve as a technological platform to be further developed for biomedical applications such as point-of-care (POC) testing and wearable devices for healthcare monitoring system. This review will provide a comprehensive grounding on LIG from its inception and fabrication mechanism to the characterization of its key functional properties. The exploration of biomedicals applications in the form of wearable and point-of-care devices will then be presented. Issue of health risk from accidental exposure to LIG will be covered. Then LIG-based wearable devices will be compared to devices of different materials. Finally, we discuss the implementation of Internet of Medical Things (IoMT) to wearable devices and explore and speculate on its potentials and challenges.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Copyright 2023, Advanced Functional Materials

Fig. 8

Copyright 2012, American Chemical Society

Fig. 9

Copyright 2014, Wiley–VCH GmbH

Fig. 10

Copyright 2019, MDPI

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  2. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW et al (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708. https://doi.org/10.1021/NL080649I

    Article  PubMed  Google Scholar 

  3. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446. https://doi.org/10.1021/NL801412Y/ASSET/IMAGES/NL-2008-01412Y_M003.GIF

    Article  CAS  PubMed  Google Scholar 

  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/NL0731872/ASSET/IMAGES/LARGE/NL-2007-031872_0004.JPEG

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823. https://doi.org/10.1038/NATURE08105

    Article  CAS  PubMed  Google Scholar 

  6. Punith Kumar MK, Laxmeesha PM, Ray S, Srivastava C (2020) Enhancement in the corrosion resistance of nanocrystalline aluminium coatings by incorporation of graphene oxide. Appl Surf Sci 533:147512. https://doi.org/10.1016/J.APSUSC.2020.147512

    Article  CAS  Google Scholar 

  7. Ghamkhari A, Abbaspour-Ravasjani S, Talebi M, Hamishehkar H, Hamblin MR (2021) Development of a graphene oxide-poly lactide nanocomposite as a smart drug delivery system. Int J Biol Macromol 169:521–531. https://doi.org/10.1016/J.IJBIOMAC.2020.12.084

    Article  CAS  PubMed  Google Scholar 

  8. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms6714

    Article  CAS  Google Scholar 

  9. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. https://doi.org/10.1073/PNAS.0502848102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. https://doi.org/10.1038/nnano.2008.329

    Article  CAS  PubMed  Google Scholar 

  11. Ramachandran R, Felix S, Joshi GM, Raghupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48:3834–3842. https://doi.org/10.1016/J.MATERRESBULL.2013.05.085

    Article  CAS  Google Scholar 

  12. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda KI, Mizuno S (2012) Epitaxial Growth of Large-Area Single-Layer Graphene over Cu(1 1 1)/Sapphire by Atmospheric Pressure CVD. Carbon 50:57–65. https://doi.org/10.1016/J.CARBON.2011.08.002

    Article  CAS  Google Scholar 

  13. Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554. https://doi.org/10.1021/NL201566C/SUPPL_FILE/NL201566C_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  14. Park S, Hu Y, Hwang JO, Lee ES, Casabianca LB, Cai W, Potts JR, Ha HW, Chen S, Oh J et al (2012) Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun 3:1–8. https://doi.org/10.1038/ncomms1643

    Article  CAS  Google Scholar 

  15. Yang W, Zhao W, Li Q, Li H, Wang Y, Li Y, Wang G (2020) Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl Mater Interfaces 12:3928–3935. https://doi.org/10.1021/ACSAMI.9B17467

    Article  CAS  PubMed  Google Scholar 

  16. Singh SP, Ramanan S, Kaufman Y, Arnusch CJ (2018) Laser-induced graphene biofilm inhibition: texture does matter. ACS Appl Nano Mater 1:1713–1720. https://doi.org/10.1021/ACSANM.8B00175/ASSET/IMAGES/LARGE/AN-2018-001753_0006.JPEG

    Article  CAS  Google Scholar 

  17. Ge L, Hong Q, Li H, Liu C, Li F (2019) Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:1904000. https://doi.org/10.1002/ADFM.201904000

    Article  Google Scholar 

  18. Lamberti A, Serrapede M, Ferraro G, Fontana M, Perrucci F, Bianco S, Chiolerio A, Bocchini S (2017) All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater 4:035012. https://doi.org/10.1088/2053-1583/AA790E

    Article  Google Scholar 

  19. Jeong SY, Ma YW, Lee JU, Je GJ, Shin BS (2019) Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 19:4867. https://doi.org/10.3390/S19224867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li G (2020) Direct laser writing of graphene electrodes. J Appl Phys 127:010901. https://doi.org/10.1063/1.5120056

    Article  CAS  Google Scholar 

  21. Bressi AC, Dallinger A, Steksova Y, Greco F (2023) Bioderived laser-induced graphene for sensors and supercapacitors. ACS Appl Mater Interfaces 15:35788–35814. https://doi.org/10.1021/ACSAMI.3C07687/ASSET/IMAGES/LARGE/AM3C07687_0012.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inagaki M, Harada S, Sato T, Nakajima T, Horino Y, Morita K (1989) Carbonization of polyimide film “Kapton.” Carbon 27:253–257. https://doi.org/10.1016/0008-6223(89)90131-0

    Article  CAS  Google Scholar 

  23. Yan W, Yan W, Chen T, Xu J, Tian Q, Ho D (2020) Size-tunable flowerlike MoS2nanospheres combined with laser-induced graphene electrodes for NO2sensing. ACS Appl Nano Mater 3:2545–2553. https://doi.org/10.1021/ACSANM.9B02614/SUPPL_FILE/AN9B02614_SI_001.PDF

    Article  CAS  Google Scholar 

  24. Bauer M, Wunderlich L, Weinzierl F, Lei Y, Duerkop A, Alshareef HN, Baeumner AJ (2021) Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem 413:763–777. https://doi.org/10.1007/S00216-020-02939-4/TABLES/2

    Article  CAS  PubMed  Google Scholar 

  25. Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman SC, Xuan X, Kim J, Park JY (2020) A Chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens Actuators B Chem 311:127866. https://doi.org/10.1016/J.SNB.2020.127866

    Article  CAS  Google Scholar 

  26. Stanford MG, Zhang C, Fowlkes JD, Hoffman A, Ivanov IN, Rack PD, Tour JM (2020) High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl Mater Interfaces 12:10902–10907. https://doi.org/10.1021/ACSAMI.0C01377/SUPPL_FILE/AM0C01377_SI_002.MP4

    Article  CAS  PubMed  Google Scholar 

  27. Tao LQ, Wang DY, Tian H, Ju ZY, Liu Y, Pang Y, Chen YQ, Yang Y, Ren TL (2017) Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 9:8266–8273. https://doi.org/10.1039/C7NR01862B

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H et al (2019) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38:217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  CAS  PubMed  Google Scholar 

  29. Rahimi R, Ochoa M, Yu W, Ziaie B (2015) Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces 7:4463–4470. https://doi.org/10.1021/AM509087U/SUPPL_FILE/AM509087U_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  30. Xuan X, Kim JY, Hui X, Das PS, Yoon HS, Park JY (2018) A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens Bioelectron 120:160–167. https://doi.org/10.1016/j.bios.2018.07.071

    Article  CAS  PubMed  Google Scholar 

  31. de Araujo WR, Frasson CMR, Ameku WA, Silva JR, Angnes L, Paixão TRLC (2017) Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices. Angew Chem 129:15309–15313. https://doi.org/10.1002/ANGE.201708527

    Article  Google Scholar 

  32. Zhang Z, Song M, Hao J, Wu K, Li C, Hu C (2018) Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127:287–296. https://doi.org/10.1016/J.CARBON.2017.11.014

    Article  CAS  Google Scholar 

  33. Yang S, Ling Y, Wu Q, Zhang H, Yan Z, Huang G, Lin J, Wan C (2022) Lignin-derived porous graphene for wearable and ultrasensitive strain sensors. J Mater Chem C Mater 10:11730–11738. https://doi.org/10.1039/D2TC00953F

    Article  CAS  Google Scholar 

  34. Ye R, Chyan Y, Zhang J, Li Y, Han X, Kittrell C, Tour JM (2017) Laser-induced graphene formation on wood. Adv Mater 29:1702211. https://doi.org/10.1002/ADMA.201702211

    Article  Google Scholar 

  35. van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153. https://doi.org/10.1016/J.CHEMOSPHERE.2012.03.067

    Article  PubMed  Google Scholar 

  36. Jung Y, Min JK, Choi J, Bang J, Jeong S, Pyun KR, Ahn J, Cho Y, Hong S, Hong S et al (2022) Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl Mater Today 29:101589. https://doi.org/10.1016/J.APMT.2022.101589

    Article  Google Scholar 

  37. Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12:2176–2183. https://doi.org/10.1021/ACSNANO.7B08539

    Article  CAS  PubMed  Google Scholar 

  38. Xu B, Zheng M, Tang H, Chen L, Liu Y, Zhao Y, Silvestre SL, Pinheiro T, Marques AC et al (2022) Cork derived laser-induced graphene for sustainable green electronics. Flex Print Electron 7:035021. https://doi.org/10.1088/2058-8585/AC8E7B

    Article  Google Scholar 

  39. Zhao P, Bhattacharya G, Fishlock SJ, Guy JGM, Kumar A, Tsonos C, Yu Z, Raj S, McLaughlin JA, Luo J et al (2020) Replacing the metal electrodes in triboelectric nanogenerators: high-performance laser-induced graphene electrodes. Nano Energy 75:104958. https://doi.org/10.1016/J.NANOEN.2020.104958

    Article  CAS  Google Scholar 

  40. Kulyk B, Matos M, Silva BFR, Carvalho AF, Fernandes AJS, Evtuguin DV, Fortunato E, Costa FM (2022) Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diam Relat Mater 123:108855. https://doi.org/10.1016/J.DIAMOND.2022.108855

    Article  CAS  Google Scholar 

  41. Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim YJ (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf-Green Tech 4:307–322. https://doi.org/10.1007/S40684-017-0037-7/METRICS

    Article  Google Scholar 

  42. Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ (2019) Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 591:117322. https://doi.org/10.1016/J.MEMSCI.2019.117322

    Article  Google Scholar 

  43. Lei Y, Alshareef AH, Zhao W, Inal S (2020) Laser-scribed graphene electrodes derived from lignin for biochemical sensing. ACS Appl Nano Mater 3:1166–1174. https://doi.org/10.1021/ACSANM.9B01795/ASSET/IMAGES/MEDIUM/AN9B01795_M003.GIF

    Article  CAS  Google Scholar 

  44. Zhang Y, Zhu H, Sun P, Sun C, Huang H, Guan S, Liu H, Zhang H, Zhang C, Qin K (2019) Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 31:1334–1341. https://doi.org/10.1002/elan.201900043

    Article  CAS  Google Scholar 

  45. Wagh MD, Sahoo SK, Goel S (2022) Laser-induced graphene ablated polymeric microfluidic device with interdigital electrodes for taste sensing application. Sens Actuators A Phys 333:113301. https://doi.org/10.1016/J.SNA.2021.113301

    Article  CAS  Google Scholar 

  46. Zhu B, Yu L, Beikzadeh S, Zhang S, Zhang P, Wang L, Travas-Sejdic J (2021) Disposable and Portable Gold Nanoparticles Modified - Laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochim Acta 378:138132. https://doi.org/10.1016/J.ELECTACTA.2021.138132

    Article  CAS  Google Scholar 

  47. Yen Y-H, Hsu C-S, Lei Z-Y, Wang H-J, Su C-Y, Dai C-L, Tsai Y, Yen Y-H, Hsu C-S, Lei Z-Y et al (2022) Laser-induced graphene stretchable strain sensor with vertical and parallel patterns. Micromachines 13:1220. https://doi.org/10.3390/MI13081220

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen B, Johnson ZT, Sanborn D, Hjort RG, Garland NT, Soares RRA, Van Belle B, Jared N, Li J, Jing D et al (2022) Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 16:15–28. https://doi.org/10.1021/ACSNANO.1C04197/ASSET/IMAGES/MEDIUM/NN1C04197_M004.GIF

    Article  CAS  PubMed  Google Scholar 

  49. Nayak P, Kurra N, Xia C, Alshareef HN, Nayak P, Kurra N, Xia CN, Alshareef E (2016) Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv Electron Mater 2:1600185. https://doi.org/10.1002/AELM.201600185

    Article  Google Scholar 

  50. Garland NT, McLamore ES, Cavallaro ND, Mendivelso-Perez D, Smith EA, Jing D, Claussen JC (2018) Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl Mater Interfaces 10:39124–39133. https://doi.org/10.1021/ACSAMI.8B10991/ASSET/IMAGES/LARGE/AM-2018-10991C_0007.JPEG

    Article  CAS  PubMed  Google Scholar 

  51. Carvalho AF, Fernandes AJS, Leitão C, Deuermeier J, Marques AC, Martins R, Fortunato E, Costa FM, Carvalho AF et al (2018) Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater 28:1805271. https://doi.org/10.1002/ADFM.201805271

    Article  Google Scholar 

  52. Romero FJ, Salinas-Castillo A, Rivadeneyra A, Albrecht A, Godoy A, Morales DP, Rodriguez N (2018) In-depth study of laser diode ablation of Kapton polyimide for flexible conductive substrates. Nanomaterials 8:517. https://doi.org/10.3390/NANO8070517

    Article  PubMed  PubMed Central  Google Scholar 

  53. Le Dinh T-S, Lee YA, Ku Nam H, Yeon Jang K, Yang D, Kim B, Yim K, Kim S-W, Yoon H, Kim Y-J et al (2022) Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv Funct Mater 32:2107768. https://doi.org/10.1002/ADFM.202107768

    Article  Google Scholar 

  54. Duy LX, Peng Z, Li Y, Zhang J, Ji Y, Tour JM (2018) Laser-induced graphene fibers. Carbon 126:472–479. https://doi.org/10.1016/J.CARBON.2017.10.036

    Article  CAS  Google Scholar 

  55. He M, Wang Y, Wang S, Luo S (2020) Laser-induced graphene enabled 1D fiber electronics. Carbon 168:308–318. https://doi.org/10.1016/J.CARBON.2020.06.084

    Article  CAS  Google Scholar 

  56. Le TSD, Phan HP, Kwon S, Park S, Jung Y, Min J, Chun BJ, Yoon H, Ko SH, Kim SW et al (2022) Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater 32:2205158. https://doi.org/10.1002/ADFM.202205158

    Article  CAS  Google Scholar 

  57. Faas S, Bielke U, Weber R, Graf T (2018) Prediction of the surface structures resulting from heat accumulation during processing with picosecond laser pulses at the average power of 420 W. Appl Phys A Mater Sci Process 124:1–9. https://doi.org/10.1007/S00339-018-2040-4/FIGURES/7

    Article  CAS  Google Scholar 

  58. Le TSD, Park S, An J, Lee PS, Kim YJ (2019) Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater 29:1902771. https://doi.org/10.1002/ADFM.201902771

    Article  Google Scholar 

  59. Smirnov VA, Arbuzov AA, Shul’ga YM, Baskakov SA, Martynenko VM, Muradyan VE, Kresova EI (2011) Photoreduction of graphite oxide. High Energy Chem 45:57–61. https://doi.org/10.1134/S0018143911010176/METRICS

    Article  CAS  Google Scholar 

  60. Trusovas R, Ratautas K, Račiukaitis G, Niaura G (2019) Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation. Appl Surf Sci 471:154–161. https://doi.org/10.1016/J.APSUSC.2018.12.005

    Article  CAS  Google Scholar 

  61. Kim T, Lee J, Lee KH (2016) Full graphitization of amorphous carbon by microwave heating. RSC Adv 6:24667–24674. https://doi.org/10.1039/C6RA01989G

    Article  CAS  Google Scholar 

  62. Miyamoto Y, Zhang H, Tománek D (2010) Photoexfoliation of graphene from graphite: an ab initio study. Phys Rev Lett 104:208302. https://doi.org/10.1103/PHYSREVLETT.104.208302/FIGURES/3/MEDIUM

    Article  PubMed  Google Scholar 

  63. Khorkov KS, Kochuev DA, Ilin VA, Chkalov RV, Prokoshev VG, Arakelian SM (2018) Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen. J Phys Conf Ser 951:012014. https://doi.org/10.1088/1742-6596/951/1/012014

    Article  CAS  Google Scholar 

  64. Huang L, Su J, Song Y, Ye R (2020) Laser-induced graphene: en route to smart sensing. Nanomicro Lett 12:1–17. https://doi.org/10.1007/S40820-020-00496-0/FIGURES/8

    Article  Google Scholar 

  65. Kurra N, Jiang Q, Nayak P, Alshareef HN (2019) Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24:81–102. https://doi.org/10.1016/J.NANTOD.2018.12.003

    Article  CAS  Google Scholar 

  66. Dong Y, Rismiller SC, Lin J (2016) Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 104:47–55. https://doi.org/10.1016/J.CARBON.2016.03.050

    Article  CAS  Google Scholar 

  67. Cai J, Lv C, Watanabe A (2016) Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater 4:1671–1679. https://doi.org/10.1039/C5TA09450J

    Article  CAS  Google Scholar 

  68. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541. https://doi.org/10.1126/SCIENCE.1200770

    Article  CAS  PubMed  Google Scholar 

  69. Ma J, Alfè D, Michaelides A, Wang E (2009) Stone-Wales defects in graphene and other planar s P2 -bonded materials. Phys Rev B Condens Matter Mater Phys 80:033407. https://doi.org/10.1103/PHYSREVB.80.033407/FIGURES/3/MEDIUM

    Article  Google Scholar 

  70. Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ et al (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 3:1–9. https://doi.org/10.1038/ncomms2315

    Article  CAS  Google Scholar 

  71. Yang W, Liu Y, Li Q, Wei J, Li X, Zhang Y, Liu J (2020) In situ formation of phosphorus-doped porous graphene via laser induction. RSC Adv 10:23953–23958. https://doi.org/10.1039/D0RA03363D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peng Z, Ye R, Mann JA, Zakhidov D, Li Y, Smalley PR, Lin J, Tour JM (2015) Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9:5868–5875. https://doi.org/10.1021/ACSNANO.5B00436/SUPPL_FILE/NN5B00436_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  73. Huang L, Liu Y, Ji LC, Xie YQ, Wang T, Shi WZ (2011) Pulsed laser assisted reduction of graphene oxide. Carbon 49:2431–2436. https://doi.org/10.1016/J.CARBON.2011.01.067

    Article  CAS  Google Scholar 

  74. Wan Z, Nguyen NT, Gao Y, Li Q (2020) Laser induced graphene for biosensors. Sustain Mater Technol 25:e00205. https://doi.org/10.1016/J.SUSMAT.2020.E00205

    Article  CAS  Google Scholar 

  75. Wang Z, Tan KK, Lam YC (2021) Electrical resistance reduction induced with CO2 laser single line scan of polyimide. Micromachines 12:227. https://doi.org/10.3390/MI12030227

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Luong DX, Zhang J, Tarkunde YR, Kittrell C, Sargunaraj F, Ji Y, Arnusch CJ, Tour JM (2017) Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29:1700496. https://doi.org/10.1002/ADMA.201700496

    Article  Google Scholar 

  77. Tittle CM, Yilman D, Pope MA, Backhouse CJ, Tittle CM, Backhouse CJ, Yilman D, Pope MA (2018) Robust superhydrophobic laser-induced graphene for desalination applications. Adv Mater Technol 3:1700207. https://doi.org/10.1002/ADMT.201700207

    Article  Google Scholar 

  78. Tiliakos A, Ceaus C, Iordache SM, Vasile E, Stamatin I (2016) Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. J Anal Appl Pyrolysis 121:275–286. https://doi.org/10.1016/J.JAAP.2016.08.007

    Article  CAS  Google Scholar 

  79. Singh SP, Li Y, Be’Er A, Oren Y, Tour JM, Arnusch CJ (2017) Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interfaces 9:18238–18247. https://doi.org/10.1021/ACSAMI.7B04863/SUPPL_FILE/AM7B04863_SI_002.MPG

    Article  CAS  PubMed  Google Scholar 

  80. Barbhuiya, N.H.; Singh, S.P.; Makovitzki, A.; Narkhede, P.; Oren, Z.; Adar, Y.; Lupu, E.; Cherry, L.; Monash, A.; Arnusch, C.J. Virus inactivation in water using laser-induced graphene filters. Materials (Basel) 2021, 14, https://doi.org/10.3390/MA14123179.

  81. Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ (2018) Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 12:289–297. https://doi.org/10.1021/ACSNANO.7B06263/ASSET/IMAGES/LARGE/NN-2017-06263H_0007.JPEG

    Article  CAS  PubMed  Google Scholar 

  82. Stanford MG, Li JT, Chen Y, Mchugh EA, Liopo A, Xiao H, Tour JM (2019) Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano 13:11912–11920. https://doi.org/10.1021/ACSNANO.9B05983/SUPPL_FILE/NN9B05983_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  83. Say MG, Brooke R, Edberg J, Grimoldi A, Belaineh D, Engquist I, Berggren M (2020) Spray-coated paper supercapacitors. npj Flex Electron 4:1–7. https://doi.org/10.1038/s41528-020-0079-8

    Article  CAS  Google Scholar 

  84. Brownson DAC, Varey SA, Hussain F, Haigh SJ, Banks CE (2014) Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6:1607–1621. https://doi.org/10.1039/C3NR05643K

    Article  CAS  PubMed  Google Scholar 

  85. Muzyka K, Xu G (2022) Laser-induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34:574–589. https://doi.org/10.1002/ELAN.202100425

    Article  CAS  Google Scholar 

  86. Zhu J, Liu S, Hu Z, Zhang X, Yi N, Tang K, Dexheimer MG, Lian X, Wang Q, Yang J et al (2021) Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 193:113606. https://doi.org/10.1016/J.BIOS.2021.113606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, B.; McCay, R.N.; Goswami, S.; Xu, Y.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 2018, 30, https://doi.org/10.1002/ADMA.201804327.

  88. Zhang Q, Tan L, Chen Y, Zhang T, Wang W, Liu Z, Fu L, Zhang Q, Tan LF, Chen YX et al (2016) Human-like sensing and reflexes of graphene-based films. Adv Sci 3:1600130. https://doi.org/10.1002/ADVS.201600130

    Article  Google Scholar 

  89. Liu J, Ji H, Lv X, Zeng C, Li H, Li F, Qu B, Cui F, Zhou Q (2022) Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchim Acta 189:1–14. https://doi.org/10.1007/S00604-021-05157-6/FIGURES/9

    Article  Google Scholar 

  90. Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C (2022) End-to-end design of wearable sensors. Nat Rev Mater 7:887–907. https://doi.org/10.1038/s41578-022-00460-x

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A (2024) Challenges and advances of hydrogel-based wearable electrochemical biosensors for real-time monitoring of biofluids: from lab to market. A Review. Anal Chem. https://doi.org/10.1021/ACS.ANALCHEM.3C03942

    Article  PubMed  Google Scholar 

  92. Khan A, Haque MN, Kabiraz DC, Yeasin A, Rashid HA, Sarker AC, Hossain G (2023) A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Sens Actuators A Phys 350:114093. https://doi.org/10.1016/J.SNA.2022.114093

    Article  CAS  Google Scholar 

  93. Zhang Q, Ma S, Zhan X, Meng W, Wang H, Liu C, Zhang T, Zhang K, Su S (2024) Smartphone-based wearable microfluidic electrochemical sensor for on-site monitoring of copper ions in sweat without external driving. Talanta 266:125015. https://doi.org/10.1016/J.TALANTA.2023.125015

    Article  CAS  PubMed  Google Scholar 

  94. Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ et al (2017) An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms14579

    Article  CAS  Google Scholar 

  95. Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z (2021) Laser-induced graphene for bioelectronics and soft actuators. Nano Res 14:3033. https://doi.org/10.1007/S12274-021-3441-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM, Carvalho AF, Kulyk B, Costa FM, Fortunato E (2022) A review on the applications of graphene in mechanical transduction. Adv Mater 34:2101326. https://doi.org/10.1002/ADMA.202101326

    Article  CAS  Google Scholar 

  97. Sindhu B, Kothuru A, Sahatiya P, Goel S, Nandi S (2021) Laser-induced graphene printed wearable flexible antenna-based strain sensor for wireless human motion monitoring. IEEE Trans Electron Devices 68:3189–3194. https://doi.org/10.1109/TED.2021.3067304

    Article  CAS  Google Scholar 

  98. Yoon H, Lee K, Shin H, Jeong S, Lee YJ, Yang S, Lee SH, Yoon H, Lee K, Shin H et al (2023) In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor. Adv Funct Mater 33:2300322. https://doi.org/10.1002/ADFM.202300322

    Article  CAS  Google Scholar 

  99. Guo W, Xia Y, Zhu Y, Han S, Li Q, Wang X (2023) Laser-induced graphene based triboelectric nanogenerator for accurate wireless control and tactile pattern recognition. Nano Energy 108:108229. https://doi.org/10.1016/J.NANOEN.2023.108229

    Article  CAS  Google Scholar 

  100. Dallinger A, Keller K, Fitzek H, Greco F (2020) Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl Mater Interfaces 12:19855–19865. https://doi.org/10.1021/ACSAMI.0C03148/ASSET/IMAGES/MEDIUM/AM0C03148_M005.GIF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang L, Liu Y, Li G, Song Y, Su J, Cheng L, Guo W, Zhao G, Shen H, Yan Z et al (2023) Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett 23:597–605. https://doi.org/10.1021/ACS.NANOLETT.2C04228/SUPPL_FILE/NL2C04228_SI_005.MP4

    Article  CAS  PubMed  Google Scholar 

  102. Zhang C, Xie Y, Deng H, Tumlin T, Zhang C, Su J-W, Yu P, Lin J, Zhang C, Xie YC et al (2017) Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 13:1604197. https://doi.org/10.1002/SMLL.201604197

    Article  Google Scholar 

  103. Xu Y, Sun B, Ling Y, Fei Q, Chen Z, Li X, Guo P, Jeon N, Goswami S, Liao Y et al (2020) Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc Natl Acad Sci USA 117:205–213. https://doi.org/10.1073/PNAS.1917762116/SUPPL_FILE/PNAS.1917762116.SM04.MP4

    Article  CAS  PubMed  Google Scholar 

  104. Wang Q, Li Y, Xu Q, Yu H, Zhang D, Zhou Q, Dhakal R, Li Y, Yao Z (2023) Finger–coding intelligent human–machine interaction system based on all–fabric ionic capacitive pressure sensors. Nano Energy 116:108783. https://doi.org/10.1016/J.NANOEN.2023.108783

    Article  CAS  Google Scholar 

  105. Huang X, Cheng H, Chen K, Zhang Y, Zhang Y, Liu Y, Zhu C, Ouyang SC, Kong GW, Yu C et al (2013) Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans Biomed Eng 60:2848–2857. https://doi.org/10.1109/TBME.2013.2264879

    Article  PubMed  Google Scholar 

  106. Zhu C, Tao LQ, Wang Y, Zheng K, Yu J, Xiandong L, Chen X, Huang Y (2020) Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem 325:128790. https://doi.org/10.1016/J.SNB.2020.128790

    Article  CAS  Google Scholar 

  107. Wang H, Wang H, Wang Y, Su X, Wang C, Zhang M, Jian M, Xia K, Liang X, Lu H et al (2020) Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 14:3219–3226. https://doi.org/10.1021/ACSNANO.9B08638/SUPPL_FILE/NN9B08638_SI_003.MP4

    Article  CAS  PubMed  Google Scholar 

  108. Mamleyev ER, Heissler S, Nefedov A, Weidler PG, Nordin N, Kudryashov VV, Länge K, MacKinnon N, Sharma S (2019) Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex Electron 3:1–11. https://doi.org/10.1038/s41528-018-0047-8

    Article  CAS  Google Scholar 

  109. Nah JS, Barman SC, Zahed MA, Sharifuzzaman M, Yoon H, Park C, Yoon S, Zhang S, Park JY (2021) A Wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens Actuators B Chem 329:129206. https://doi.org/10.1016/J.SNB.2020.129206

    Article  CAS  Google Scholar 

  110. Kucherenko IS, Sanborn D, Chen B, Garland N, Serhan M, Forzani E, Gomes C, Claussen JC (2020) Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv Mater Technol 5:1901037. https://doi.org/10.1002/ADMT.201901037

    Article  CAS  Google Scholar 

  111. Hui X, Xuan X, Kim J, Park JY (2019) A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim Acta 328:135066. https://doi.org/10.1016/J.ELECTACTA.2019.135066

    Article  CAS  Google Scholar 

  112. Wan Z, Umer M, Lobino M, Thiel D, Nguyen NT, Trinchi A, Shiddiky MJA, Gao Y, Li Q (2020) Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar MiRNA detection. Carbon 163:385–394. https://doi.org/10.1016/J.CARBON.2020.03.043

    Article  CAS  Google Scholar 

  113. Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens 2:616–620. https://doi.org/10.1021/ACSSENSORS.7B00066/ASSET/IMAGES/LARGE/SE-2017-000663_0007.JPEG

    Article  CAS  PubMed  Google Scholar 

  114. Chandra Barman S, Abu Zahed M, Sharifuzzaman M, Gyu Ko S, Yoon H, San Nah J, Xuan X, Yeong Park J, Barman SC, Zahed MA et al (2020) A polyallylamine anchored amine-rich laser-ablated graphene platform for facile and highly selective electrochemical IgG biomarker detection. Adv Funct Mater 30:1907297. https://doi.org/10.1002/ADFM.201907297

    Article  Google Scholar 

  115. Beduk T, Beduk D, de Oliveira Filho JI, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Salama KN et al (2021) Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor. Anal Chem 93:8585–8594. https://doi.org/10.1021/ACS.ANALCHEM.1C01444/ASSET/IMAGES/LARGE/AC1C01444_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  116. Puetz P, Behrent A, Baeumner AJ, Wegener J (2020) Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens Actuators B Chem 321:128443. https://doi.org/10.1016/J.SNB.2020.128443

    Article  CAS  Google Scholar 

  117. Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, Mclamore ES, Claussen JC, Gomes CL (2020) Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in Chicken Broth. ACS Sens 5:1900–1911. https://doi.org/10.1021/ACSSENSORS.9B02345/SUPPL_FILE/SE9B02345_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  118. Shathi MA, Chen M, Khoso NA, Rahman MT, Bhattacharjee B (2020) Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Mater Des 193:108792. https://doi.org/10.1016/J.MATDES.2020.108792

    Article  CAS  Google Scholar 

  119. Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N, Afroj S, Novoselov KS, Karim N, Tan S, Abdelkader AM (2020) Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv Funct Mater 30:2000293. https://doi.org/10.1002/ADFM.202000293

    Article  CAS  Google Scholar 

  120. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871. https://doi.org/10.1002/SMLL.200902066

    Article  CAS  PubMed  Google Scholar 

  121. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411. https://doi.org/10.1038/nnano.2010.86

    Article  CAS  PubMed  Google Scholar 

  122. Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28:14110–14113. https://doi.org/10.1021/LA302750E/ASSET/IMAGES/LARGE/LA-2012-02750E_0004.JPEG

    Article  CAS  PubMed  Google Scholar 

  123. Bussy C, Ali-Boucetta H, Kostarelos K (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc Chem Res 46:692–701. https://doi.org/10.1021/AR300199E/ASSET/IMAGES/LARGE/AR-2012-00199E_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  124. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025. https://doi.org/10.1016/J.BIOMATERIALS.2012.07.040

    Article  CAS  PubMed  Google Scholar 

  125. Guo R, Mao J, Yan LT (2013) Computer simulation of cell entry of graphene nanosheet. Biomaterials 34:4296–4301. https://doi.org/10.1016/J.BIOMATERIALS.2013.02.047

    Article  CAS  PubMed  Google Scholar 

  126. Li Y, Yuan H, Von Dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. https://doi.org/10.1073/PNAS.1222276110/SUPPL_FILE/SM03.AVI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B (2016) Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine 12:333–351. https://doi.org/10.1016/J.NANO.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  128. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464. https://doi.org/10.1039/C1NR10172B

    Article  CAS  PubMed  Google Scholar 

  129. Zhang D, Zhang Z, Liu Y, Chu M, Yang C, Li W, Shao Y, Yue Y, Xu R (2015) The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 68:100–113. https://doi.org/10.1016/J.BIOMATERIALS.2015.07.060

    Article  CAS  PubMed  Google Scholar 

  130. Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795. https://doi.org/10.1016/J.BIOMATERIALS.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  131. Kucki M, Rupper P, Sarrieu C, Melucci M, Treossi E, Schwarz A, León V, Kraegeloh A, Flahaut E, Vázquez E et al (2016) Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale 8:8749–8760. https://doi.org/10.1039/C6NR00319B

    Article  CAS  PubMed  Google Scholar 

  132. Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, He Y, Shi J, Li W, Hu J et al (2013) Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater 5:e44. https://doi.org/10.1038/am.2013.7

    Article  CAS  Google Scholar 

  133. Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW (2015) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89:1557–1568. https://doi.org/10.1007/S00204-014-1303-X/FIGURES/6

    Article  CAS  PubMed  Google Scholar 

  134. Schinwald A, Murphy F, Askounis A, Koutsos V, Sefiane K, Donaldson K, Campbell CJ (2014) Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology 8:824–832. https://doi.org/10.3109/17435390.2013.831502

    Article  CAS  PubMed  Google Scholar 

  135. Drasler B, Kucki M, Delhaes F, Buerki-Thurnherr T, Vanhecke D, Korejwo D, Chortarea S, Barosova H, Hirsch C, Petri-Fink A et al (2018) Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon 137:125–135. https://doi.org/10.1016/J.CARBON.2018.05.012

    Article  CAS  Google Scholar 

  136. Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L et al (2024) First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat Nanotechnol 2024(3):1–10. https://doi.org/10.1038/s41565-023-01572-3

    Article  CAS  Google Scholar 

  137. Liao KH, Lin YS, MacOsko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–2615. https://doi.org/10.1021/AM200428V/SUPPL_FILE/AM200428V_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  138. Pelin M, Fusco L, León V, Martín C, Criado A, Sosa S, Vázquez E, Tubaro A, Prato M (2017) Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 7:1–12. https://doi.org/10.1038/srep40572

    Article  CAS  Google Scholar 

  139. Pelin M, Fusco L, Martín C, Sosa S, Frontiñán-Rubio J, González-Domínguez JM, Durán-Prado M, Vázquez E, Prato M, Tubaro A (2018) Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale 10:11820–11830. https://doi.org/10.1039/C8NR02933D

    Article  CAS  PubMed  Google Scholar 

  140. Frontiñán-Rubio J, Victoria Gómez M, Martín C, González-Domínguez JM, Durán-Prado M, Vázquez E (2018) Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale 10:11604–11615. https://doi.org/10.1039/C8NR00897C

    Article  PubMed  Google Scholar 

  141. Fusco L, Garrido M, Martín C, Sosa S, Ponti C, Centeno A, Alonso B, Zurutuza A, Vázquez E, Tubaro A et al (2020) Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale 12:610–622. https://doi.org/10.1039/C9NR06815E

    Article  CAS  PubMed  Google Scholar 

  142. Murray R, Vaughan E, Zhao J, Gui J, Luo J, Hsieh C, Huang C-C, Su C-Y, Lamberti A et al (2020) Toxicity assessment of laser-induced graphene by zebrafish during development. J Phys: Mater 3:034008. https://doi.org/10.1088/2515-7639/AB9522

    Article  Google Scholar 

  143. Wang ZG, Zhou R, Jiang D, Song JE, Xu Q, Si J, Chen YP, Zhou X, Gan L, Li JZ et al (2015) Toxicity of graphene quantum dots in zebrafish embryo. Biomed Environ Sci 28:341–351. https://doi.org/10.3967/BES2015.048

    Article  CAS  PubMed  Google Scholar 

  144. Manjunatha B, Park SH, Kim K, Kundapur RR, Lee SJ (2018) Pristine graphene induces cardiovascular defects in zebrafish (Danio rerio) embryogenesis. Environ Pollut 243:246–254. https://doi.org/10.1016/J.ENVPOL.2018.08.058

    Article  CAS  PubMed  Google Scholar 

  145. D’Amora M, Camisasca A, Lettieri S, Giordani S (2017) Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials 7:414. https://doi.org/10.3390/NANO7120414

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ma B, Chi J, Xu C, Ni Y, Zhao C, Liu H (2020) Wearable capillary microfluidics for continuous perspiration sensing. Talanta 212:120786. https://doi.org/10.1016/J.TALANTA.2020.120786

    Article  CAS  PubMed  Google Scholar 

  147. Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV (2021) Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens 6:1174–1186. https://doi.org/10.1021/ACSSENSORS.0C02446/ASSET/IMAGES/LARGE/SE0C02446_0007.JPEG

    Article  CAS  PubMed  Google Scholar 

  148. Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola e Silva AN, Rueda R, Brown C, Angnes L, Wang J et al (2022) Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 414:5411–5421. https://doi.org/10.1007/S00216-021-03865-9/FIGURES/4

    Article  CAS  PubMed  Google Scholar 

  149. Katseli V, Economou A, Kokkinos C (2021) Smartphone-addressable 3D-printed electrochemical ring for nonenzymatic self-monitoring of glucose in human sweat. Anal Chem 93:3331–3336. https://doi.org/10.1021/acs.analchem.0c05057

    Article  CAS  PubMed  Google Scholar 

  150. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L (2012) A 3D printed dry electrode for ECG/EEG recording. Sens Actuators A Phys 174:96–102. https://doi.org/10.1016/J.SNA.2011.12.017

    Article  CAS  Google Scholar 

  151. Nesaei S, Song Y, Wang Y, Ruan X, Du D, Gozen A, Lin Y (2018) Micro additive manufacturing of glucose biosensors: a feasibility study. Anal Chim Acta 1043:142–149. https://doi.org/10.1016/J.ACA.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  152. Kim T, Yi Q, Hoang E, Esfandyarpour R (2021) A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv Mater Technol 6:2001021. https://doi.org/10.1002/ADMT.202001021

    Article  CAS  Google Scholar 

  153. Shi G, Lowe SE, Teo AJT, Dinh TK, Tan SH, Qin J, Zhang Y, Zhong YL, Zhao H (2019) A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl Mater Today 16:482–492. https://doi.org/10.1016/J.APMT.2019.06.016

    Article  Google Scholar 

  154. Votzke, C.; Daalkhaijav, U.; Mengue, Y.; Johnston, M.L. Highly-stretchable biomechanical strain sensor using printed liquid metal paste. 2018 IEEE Biomedical Circuits and Systems Conference, BioCAS 2018 - Proceedings 2018, https://doi.org/10.1109/BIOCAS.2018.8584671.

  155. Lo LW, Shi H, Wan H, Xu Z, Tan X, Wang C (2020) Inkjet-printed soft resistive pressure sensor patch for wearable electronics applications. Adv Mater Technol 5:1900717. https://doi.org/10.1002/ADMT.201900717

    Article  CAS  Google Scholar 

  156. Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA, Muth JT, Truby RL, Kolesky DB et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312. https://doi.org/10.1002/ADMA.201400334

    Article  CAS  PubMed  Google Scholar 

  157. Su X, Borayek R, Li X, Herng TS, Tian D, Lim GJH, Wang Y, Wu J, Ding J (2020) Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chem Eng J 389:124503. https://doi.org/10.1016/J.CEJ.2020.124503

    Article  CAS  Google Scholar 

  158. Yin XY, Zhang Y, Cai X, Guo Q, Yang J, Wang ZL (2019) 3D printing of ionic conductors for high-sensitivity wearable sensors. Mater Horiz 6:767–780. https://doi.org/10.1039/C8MH01398E

    Article  CAS  Google Scholar 

  159. Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR (2015) Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans Biomed Circuits Syst 9:670–677. https://doi.org/10.1109/TBCAS.2015.2488582

    Article  PubMed  Google Scholar 

  160. Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017, 3, https://doi.org/10.1126/SCIADV.1701629/SUPPL_FILE/1701629_SM.PDF.

  161. Chen X, Wang BC, Li H (2024) A privacy-preserving multi-factor authentication scheme for cloud-assisted IoMT with post-quantum security. J Inf Secur Appl 81:103708. https://doi.org/10.1016/J.JISA.2024.103708

    Article  Google Scholar 

  162. Kammarchedu V, Butler D, Ebrahimi A (2022) A machine learning-based multimodal electrochemical analytical device based on EMoSx-LIG for multiplexed detection of tyrosine and uric acid in sweat and saliva. Anal Chim Acta 1232:340447. https://doi.org/10.1016/J.ACA.2022.340447

    Article  CAS  PubMed  Google Scholar 

  163. Ji J, Zhao W, Wang Y, Li Q, Wang G (2023) Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS Nano 17:20153–20166. https://doi.org/10.1021/ACSNANO.3C05838/ASSET/IMAGES/LARGE/NN3C05838_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  164. Li X, Dai HN, Wang Q, Imran M, Li D, Imran MA (2020) Securing Internet of Medical Things with friendly-jamming schemes. Comput Commun 160:431–442. https://doi.org/10.1016/J.COMCOM.2020.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ghubaish A, Salman T, Zolanvari M, Unal D, Al-Ali A, Jain R (2021) Recent Advances in the Internet-of-Medical-Things (IoMT) systems security. IEEE Internet Things J 8:8707–8718. https://doi.org/10.1109/JIOT.2020.3045653

    Article  Google Scholar 

  166. Ahmed SF, Alam MSB, Afrin S, Rafa SJ, Rafa N, Gandomi AH (2024) Insights into Internet of Medical Things (IoMT): data fusion, security issues and potential solutions. Inf Fusion 102:102060. https://doi.org/10.1016/J.INFFUS.2023.102060

    Article  Google Scholar 

  167. Zhang H, Li J, Wen B, Xun Y, Liu J (2018) Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet Things J 5:1550–1560. https://doi.org/10.1109/JIOT.2018.2792423

    Article  Google Scholar 

  168. Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N, Mankodiya K (2018) Towards fog-driven IoT EHealth: promises and challenges of IoT in medicine and healthcare. Futur Gener Comput Syst 78:659–676. https://doi.org/10.1016/J.FUTURE.2017.04.036

    Article  Google Scholar 

  169. Yaqoob T, Abbas H, Atiquzzaman M (2019) Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices-a review. IEEE Commun Surv Tutor 21:3723–3768. https://doi.org/10.1109/COMST.2019.2914094

    Article  Google Scholar 

  170. Dwivedi R, Mehrotra D, Chandra S (2022) Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: a systematic review. J Oral Biol Craniofac Res 12:302–318. https://doi.org/10.1016/J.JOBCR.2021.11.010

    Article  PubMed  Google Scholar 

  171. Sasidharan, P.; Rajalakshmi, T.; Snekhalatha, U. Wearable cardiorespiratory monitoring device for heart attack prediction. Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019 2019, 54–57, https://doi.org/10.1109/ICCSP.2019.8698059.

  172. López-Blanco R, Velasco MA, Méndez-Guerrero A, Romero JP, del Castillo MD, Serrano JI, Rocon E, Benito-León J (2019) Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci 401:37–42. https://doi.org/10.1016/J.JNS.2019.04.011

    Article  PubMed  Google Scholar 

  173. Lin, Q.; Xu, W.; Liu, J.; Khamis, A.; Hu, W.; Hassan, M.; Seneviratne, A. H2B: heartbeat-based secret key generation using piezo vibration sensors. IPSN 2019 - Proceedings of the 2019 Information Processing in Sensor Networks 2019, 265–276, https://doi.org/10.1145/3302506.3310406.

  174. Lazazzera R, Belhaj Y, Carrault G (2019) A new wearable device for blood pressure estimation using photoplethysmogram. Sensors 19:2557. https://doi.org/10.3390/S19112557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fitness tracking app Strava gives away location of secret US army bases | GPS | The Guardian Available online: https://www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases (accessed on 12 February 2024).

  176. Seh AH, Zarour M, Alenezi M, Sarkar AK, Agrawal A, Kumar R, Khan RA (2020) Healthcare data breaches: insights and implications. Healthcare 8:133. https://doi.org/10.3390/HEALTHCARE8020133

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wearables and privacy: what you need to know - IEEE Transmitter Available online: https://transmitter.ieee.org/wearables-and-privacy-what-you-need-to-know/ (accessed on 12 February 2024).

  178. Ogundoyin SO (2020) An autonomous lightweight conditional privacy-preserving authentication scheme with provable security for vehicular ad-hoc networks. Int J Comput Appl 42:196–211. https://doi.org/10.1080/1206212X.2018.1477320

    Article  Google Scholar 

  179. Wei, S. A new digital signature scheme based on factoring and discrete logarithms. Progress on Cryptography 2004, 107–111, https://doi.org/10.1007/1-4020-7987-7_14.

  180. Rabie OBJ, Selvarajan S, Hasanin T, Mohammed GB, Alshareef AM, Uddin M (2023) A full privacy-preserving distributed batch-based certificate-less aggregate signature authentication scheme for healthcare wearable wireless medical sensor networks (HWMSNs). Int J Inf Secur 23:51–80. https://doi.org/10.1007/S10207-023-00748-1/FIGURES/11

    Article  Google Scholar 

  181. Clemente-Lopez D, de Rangel-Magdaleno JJ, Muñoz-Pacheco JM (2024) A lightweight chaos-based encryption scheme for IoT healthcare systems. Internet Things 25:101032. https://doi.org/10.1016/J.IOT.2023.101032

    Article  Google Scholar 

  182. Blockchain in healthcare market demand forecast report, 2030 Available online: https://www.psmarketresearch.com/market-analysis/blockchain-in-healthcare-market (accessed on 18 February 2024).

  183. Dilawar N, Rizwan M, Ahmad F, Akram S (2019) Blockchain: securing Internet of Medical Things (IoMT). Int J Adv Comput Sci Appl 10:82–89. https://doi.org/10.14569/IJACSA.2019.0100110

    Article  Google Scholar 

  184. Ktari J, Frikha T, Ben Amor N, Louraidh L, Elmannai H, Hamdi M (2022) IoMT-based platform for e-health monitoring based on the blockchain. Electronics 11:2314. https://doi.org/10.3390/ELECTRONICS11152314

    Article  Google Scholar 

  185. Gupta K, Gupta KD, Kumar D, Srivastava G, Sharma DK (2023) BIDS: blockchain and intrusion detection system coalition for securing Internet of Medical Things networks. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3325964

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. David Apps, Edinburgh Medical School, Edinburgh, Scotland, is thanked for his critical manuscript reading and language improvements.

Funding

The authors thank their institution and its kind sponsors from the industry and business section for general laboratory support, the VISTEC Postdoctoral Fellowship funding of Thana Thaweeskulchai and The Thailand Science Research and Innovation public funding agency, Grant No. 4368083, are acknowledged for funding through a grant within the Global Partnership Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature search, original draft, review, and editing: T.T; literature search, original draft, and editing: K.S; funding, administration, and supervision: A.S.

Corresponding author

Correspondence to Thana Thaweeskulchai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaweeskulchai, T., Sakdaphetsiri, K. & Schulte, A. Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology. Microchim Acta 191, 292 (2024). https://doi.org/10.1007/s00604-024-06350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06350-z

Keywords