Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper the performance of various stabilized mixed finite element methods based on the lowest equal-order polynomial pairs (i.e., P 1P 1 or Q 1Q 1) are numerically investigated for the stationary Stokes equations: penalty, regular, multiscale enrichment, and local Gauss integration methods. Comparisons between them will be carried out in terms of the critical factors: stabilization parameters, convergence rates, consistence, and mesh effects. It is numerically drawn that the local Gauss integration method is a favorite method among these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Araya R, Barrenechea GR, Valentin F (2006) Stabilized finite element methods based on multiscale enrichment for the Stokes problem. SIAM J Numer Anal 44: 322–348

    Article  MATH  MathSciNet  Google Scholar 

  2. Baiocchi C, Brezzi F (1992) Stabilization of unstable numerical methods. Proc. Problemi attuali dell analisi e della fisica matematica, Taormina, pp 59–64

  3. Bochev P, Dohrmann C (2006) A computational study of stabilized, low-order C 0 finite element approximations of Darcy equations. Comput Mech 38: 323–333

    Article  MATH  MathSciNet  Google Scholar 

  4. Bochev P, Dohrmann C, Gunzburger M (2006) Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J Numer Anal 44: 82–101

    Article  MATH  MathSciNet  Google Scholar 

  5. Bochev P, Gunzburger M (2004) An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J Numer Anal 42: 1189–1207

    Article  MATH  MathSciNet  Google Scholar 

  6. Bochev P, Lehoucq R (2006) Regularization and stabilization of discrete saddle-point variational problems. Electron Trans Numer Anal 22: 97–113

    MATH  MathSciNet  Google Scholar 

  7. Brefort B, Ghidaglia JM, Temam R (1988) Attractor for the penalty Navier-Stokes equations. SIAM J Math Anal 19: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezzi F, Douglas J Jr (1988) Stabilized mixed methods for the Stokes problem. Numer Math 53: 225–235

    Article  MATH  MathSciNet  Google Scholar 

  9. Buscagliaa GC, Basombrio FG, Codinab R (2000) Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection. Int J Numer Method Fluids 34: 65–92

    Article  Google Scholar 

  10. Chen Z (1993) Projection finite element methods for semiconductor device equations. Comput Math Appl 25: 81–88

    Article  MATH  Google Scholar 

  11. Chen Z (2005) Finite element methods and their applications. Springer-Verlag, Heidelberg

    MATH  Google Scholar 

  12. Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  13. Dohrmann C, Bochev P (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Method Fluids 46: 183–201

    Article  MATH  MathSciNet  Google Scholar 

  14. Douglas J Jr, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52: 495–508

    Article  MATH  MathSciNet  Google Scholar 

  15. Falk R (1975) An analysis of the penalty method and extrapolation for the stationary Stokes equations. In: Vichnevetsky R (ed) Advances in computer methods for partial differential equations. AICA, pp 66–69

  16. Gerdes K, Schöktza D (1999) hp-Finite element simulations for Stokes flow-stable and stabilized. Finite Elem Anal Des 33: 143–165

    Article  MATH  MathSciNet  Google Scholar 

  17. Girault V, Raviart PA (1987) Finite element method for Navier-Stokes equations: theory and algorithms. Springer-Verlag, Berlin

    Google Scholar 

  18. Harari I, Magoules F (2004) Numerical investigations of stabilized finite element computations for acoustics. Wave Motion 39: 339–349

    Article  MATH  MathSciNet  Google Scholar 

  19. Hecht F, Píronneau O, Hyaric AL, Ohtsuka K (2007) Freefem++ manual. Laboratoire Jacques Louis Lions

  20. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  21. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73: 173–189

    Article  MATH  MathSciNet  Google Scholar 

  22. Li J, Chen Z (2008) A new local stabilized nonconforming finite element method for the Stokes equations. Computing 82: 157–170

    Article  MATH  MathSciNet  Google Scholar 

  23. Li J, Chen Z (2009) A new stabilized finite volume method for the stationary Stokes equations. Adv Comput Math 30: 141–152

    Article  MATH  MathSciNet  Google Scholar 

  24. Li J, He Y (2008) A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J Comput Appl Math 214: 58–65

    Article  MATH  MathSciNet  Google Scholar 

  25. Li J, He Y, Chen Z (2007) A new stabilized finite element method for the transient Navier-Stokes equations. Comput Methods Appl Mech Eng 197: 22–35

    Article  MATH  MathSciNet  Google Scholar 

  26. Li J, Mei L, He Y (2006) A pressure-Poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition. Appl Math Comput 1: 24–35

    Article  MathSciNet  Google Scholar 

  27. Rannacher R, Turek S (1992) Simple nonconforming quadrilateral Stokes element. Numer Methods Partial Differ Equ 8: 97–111

    Article  MATH  MathSciNet  Google Scholar 

  28. Silvester DJ (1994) Optimal low-order finite element methods for incompressible flow. Comput Methods Appl Mech Eng 111: 57–368

    Article  MathSciNet  Google Scholar 

  29. Silvester DJ (1995) Stabilised mixed finite element methods. Numerical Analysis Report No. 262

  30. Silvester DJ, Kechkar N (1990) Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comput Methods Appl Mech Eng 79: 71–86

    Article  MATH  MathSciNet  Google Scholar 

  31. Temam R (1983) Navier-Stokes equations, theory and numerical analysis, 3rd edn. North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Communicated by W. Hackbusch.

This research was subsidized by the NSF of China 10701001, 10671154, the National Basic Research Program (No. 2005CB321703), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. SJ08A14) and by the US National Science Foundation grant DMS-0609995 and CMG Chair Funds in Reservoir Simulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., He, Y. & Chen, Z. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing 86, 37–51 (2009). https://doi.org/10.1007/s00607-009-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0064-5

Keywords

Mathematics Subject Classification (2000)