Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization of kernel learning algorithm based on parallel architecture

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper concentrates on a parallel acceleration method of optimizing Gaussian hyper-parameters with the maximum likelihood estimation. In the process of optimizing the hyper-parameters, many calculations of the kernel matrix inversion will be operated. With an increase of the kernel matrix scale, the high computation burden will be generated. In order to improve the calculating efficiency, we introduce a decomposing and iterative (DI) algorithm. This algorithm divides the large-scale kernel matrix into four blocks and solves the matrix inversion with constant iterations. Due to the independency of the calculations of the sub-matrix blocks, it is quite suitable to put the sub-matrix blocks computation in graphics processing unit. Hence, the parallel decomposing and iterative (DIP) algorithm is introduced. The inverted pendulum and ball-plate system experiments are carried out to confirm the effectiveness of the DI and DIP algorithms. Based on the simulation results, the proposed DI and DIP algorithms shed light on real engineering application in the future. This paper also provides a practical and feasible approach to accelerate the optimization of hyper-parameters with maximum likelihood estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sutton RS, Barto AG (1992) Reinforcement learning: an introduction, Bradford book. Mach Learn 8(3–4):225–227

    Google Scholar 

  2. Watkins CJ, Dayan P (1992) Technical note: Q-learning. Mach Learn 8(3–4):279–292

    MATH  Google Scholar 

  3. Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274

    Article  Google Scholar 

  4. Sutton RS (1995) Generalization in reinforcement learning: successful examples using sparse coarse coding. In: Proceedings of the international conference on neural information processing systems, pp 1038–1044

  5. Achbany Y, Fouss F, Yen L, Pirotte A (2008) Tuning continual exploration in reinforcement learning: an optimality property of the Boltzmann strategy. Neurocomputing 71(13):2507–2520

    Article  Google Scholar 

  6. Powell W (2008) Approximate dynamic programming: solving the curses of dimensionality. Wiley 24(1):155–157

    Google Scholar 

  7. Srinivasan D, Jin X, Cheu R (2005) Adaptive neural network models for automatic incident detection on freeways. Neurocomputing 64(1):473–496

    Article  Google Scholar 

  8. Radhakrishnan A, Kavitha V (2016) Energy conservation in cloud data centers by minimizing virtual machines migration through artificial neural network. Computing 98(11):1–18

    Article  MathSciNet  Google Scholar 

  9. Bertsekas D (2007) Dynamic programming and optimal control. Athena Sci 47(6):833–834

    Google Scholar 

  10. Valenti M (2007) Approximate dynamic programming with applications in multi-agent systems. Institute of Technology Press, Cambridge

    Google Scholar 

  11. Abe S (1976) Kernel-based methods. Computing 17(2):163–167

    Article  MathSciNet  Google Scholar 

  12. Wu J, Xu X, Lian C, Huang Y (2011) Multi-robot formation control with kernel-based reinforcement learning. Robot 33(3):379–384

    Article  Google Scholar 

  13. Mahadevan S (2005) Proto-value functions: developmental reinforcement learning. In: Proceedings of international conference on machine learning, pp 553–560

  14. Staniszewska M, Jarosz J, Jon M, Gamian A (2006) Fast direct policy evaluation using multiscale analysis of Markov diffusion processes. In: Proceedings of international conference on machine learning, pp 601–608

  15. Rasmussen C, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11(6):3011–3015

    MathSciNet  MATH  Google Scholar 

  16. Sussner P (2000) Observations on morphological associative memories and the kernel method. Neurocomputing 31(1–4):167–183

    Article  Google Scholar 

  17. Ormoneit D (2001) Kernel-based reinforcement learning in average-cost problems Dirk Ormoneit. IEEE Trans Autom Control 49(2–3):161–178

    MathSciNet  Google Scholar 

  18. Ormoneit D, Glynn P (2002) Kernel-based reinforcement learning in average-cost problems. Mach Learn 49(2–3):161–178

    Article  MATH  Google Scholar 

  19. Engel Y, Mannor S, Meir R (2003) The Gaussian process approach to temporal difference learning. In: Proceedings of twenty international conference on machine learning, pp 154–161

  20. Rasmussen C, Kuss M (2004) Gaussian processes in machine learning. In: Bousquet O, Luxburg U, Rätsch G (eds) Advances in neural information processing systems. MIT Press, Cambridge

    Google Scholar 

  21. Udluft S, Martinetz T (2006) Kernel rewards regression: an information efficient batch policy iteration approach. In: Proceedings of the international conference on artificial intelligence and applications, pp 428–433

  22. David V, Sanchez A (2003) Advanced support vector machines and kernel methods. Neurocomputing 55(1–2):5–20

    Google Scholar 

  23. Song T, Li D, Cao L, Hirasawa K (2016) Kernel-based least squares temporal difference with gradient correction. IEEE Trans Neural Netw Learn Syst 27(4):771–782

    Article  MathSciNet  Google Scholar 

  24. Colkesen I, Sahin E, Kavzoglu T (2016) Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. J Afr Earth Sci 118:53–64

    Article  Google Scholar 

  25. Li G, Wen C, Li Z, Zhang A, Yang F (2013) Model-based online learning with kernels. IEEE Trans Neural Netw Learn Syst 24(3):356–369

    Article  Google Scholar 

  26. Engel Y, Mannor S, Meir R (2005) Reinforcement learning with Gaussian processes. In: Proceedings of the international conference on machine learning, pp 201–208

  27. Rasmussen C (2003) Gaussian processes in machine learning. In: Proceedings of the Summer School on machine learning, pp 63–71

  28. Xu X, Xie T, Hu D, Lu X (2005) Kernel least-squares temporal difference learning. Int J Inf Technol 11:54–63

    Google Scholar 

  29. Xu X, Hu D, Lu X (2007) Kernel-based least squares policy iteration for reinforcement learning. IEEE Trans Neural Netw 18(4):973–992

    Article  Google Scholar 

  30. Xu X, Lian C, Zuo L, He H (2014) Kernel-based approximate dynamic programming for real-time online learning control: an experimental study. IEEE Trans Control Syst Technol 22(1):146–156

    Article  Google Scholar 

  31. Reisinger J, Stone P, Miikkulainen R (2008) Online kernel selection for Bayesian reinforcement learning. In: Proceedings of international conference on machine learning, pp 816–823

  32. Kveton B, Theocharous G (2013) Structured kernel-based reinforcement learning. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence, pp 569–575

  33. Chen X, Xie P, Xiong Y, He Y, Wu M (2015) Two-phase iteration for value function approximation and hyperparameter optimization in Gaussian-kernel-based adaptive critic design. Math Probl Eng 9:1–14

    MathSciNet  MATH  Google Scholar 

  34. NVIDIA (2017) CUDA C Programming Guide version 8.0. http://docs.nvidia.com/cuda/cudacprogramming-guide. Accessed 10 June 2018

  35. Zein A, Mccreath E, Rendell A, Smola A (2008) Performance evaluation of the NVIDIA GeForce 8800 GTX GPU for machine learning. In: Proceedings of the international conference on computational science, pp 466–475

  36. Kirk D, Hwu W (2010) Programming massively parallel processors: a hands-on approach, vol 11(3). Tsinghua University Press, Beijing

    Google Scholar 

  37. Volkov V (2010) Better performance at lower occupancy. In: Proceedings of the GPU technology conference, pp 1–6

  38. Ketema J, Donaldson A (2017) Termination analysis for GPU kernels. Sci Comput Program 148:1–16

    Article  Google Scholar 

  39. Liu B, Xin Y, Cheung R, Yan H (2014) GPU-based biclustering for microarray data analysis in neurocomputing. Neurocomputing 134(4):239–246

    Article  Google Scholar 

  40. Chen C, Li K, Ouyang A, Tang Z, Li K (2017) GPU-accelerated parallel hierarchical extreme learning machine on Flink for big data. IEEE Trans Syst Man Cybern Syst. 47(10):2740–2753

    Article  Google Scholar 

  41. Chang L, El-Araby E, Dang V, Dao L (2014) GPU acceleration of nonlinear diffusion tensor estimation using CUDA and MPI. Neurocomputing 135(C):328–338

    Article  Google Scholar 

  42. Azarkhish E, Rossi D, Loi I, Benini L (2017) Neurostream: scalable and energy efficient deep learning with smart memory cubes. IEEE Trans Parallel Distrib Syst 99:1–13

    Google Scholar 

  43. Bailey D, Ferguson H (1988) A Strassen–Newton algorithm for high-speed parallelizable matrix inversion. In: Proceedings of the ACM/IEEE conference on supercomputing, pp 419–424

  44. Sharma G, Agarwala A, Bhattacharya B (2013) A fast parallel Gauss–Jordan algorithm for matrix inversion using CUDA. Comput Struct 128:31–37

    Article  Google Scholar 

  45. Murni A , Ernastuti T, Kerami D (2016) Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing. In: Proceedings of the international symposium on current progress in mathematics and sciences, pp 1-6

  46. Wang Z, Xu X, Zhao W (2010) Optimizing sparse matrix-vector multiplication on CUDA companion. In: Proceedings of the international conference on education technology and computer, pp 109–113

  47. Su X, Xia F, Liu J, Wu L (2018) Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems. Automatica 94:236–248

    Article  MathSciNet  MATH  Google Scholar 

  48. Rubio E (2010) Indirect hierarchical FCMAC control for the ball and plate system. Neurocomputing 73(13–15):2454–2463

    Google Scholar 

  49. Alpaslan Yildiz H, Goren-Sumer L (2017) Stabilizing of ball and plate system using an approximate model. In: Proceedings of twenty the international federation of automatic control, vol 50, pp 9601–9606

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 61473316, the Hubei Provincial Natural Science Foundation of China under Grant Nos. 2017CFA030 and 2015CFA010, and the 111 project under Grant B17040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, X. Optimization of kernel learning algorithm based on parallel architecture. Computing 102, 1881–1907 (2020). https://doi.org/10.1007/s00607-019-00760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-019-00760-1

Keywords

Mathematics Subject Classification