Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Acta Mechanica Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The non-Darcy free convection flow on a vertical flat plate embedded in a fluid-saturated porous medium in the presence of the lateral mass flux with prescribed constant surface temperature is considered. The coupled nonlinearities generated by the density variation with temperature, inertia, and viscous dissipation are included in the present study. In particular, we analyze a system of nonlinear ODEs describing self-similar solutions to the flow and heat transfer problem. These transformed equations are integrated numerically by a second-order finite difference scheme known as the Keller box method. Furthermore, some analytical results are provided to establish relationships between the physical invariants in the problem, and also to validate the numerical method. One of the important findings of our study is that an increase in the Rayleigh number increases the velocity boundary layer thickness, while the opposite is true for the thermal boundary layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Constant in Eq. (7a)

C p :

Specific heat at constant pressure

d :

The characteristic length scale

C :

Inertia coefficient

Ec:

Eckert number

f :

Dimensionless stream function

f w :

Lateral mass flux parameter

g :

Acceleration due to gravity

K :

Permeability

k :

Thermal conductivity of the saturated porous medium

k 1 :

Inertia parameter

Nu :

Nusselt number

P :

Pressure

Pr:

Prandtl number

Ra:

Rayleigh number

T :

Temperature

T w :

Temperature of the plate

T :

Ambient temperature

u, v :

Velocity components in the x and y directions

x, y :

Cartesian coordinates

α :

Effective thermal conductivity

β 0, β 1 :

Constants in Eq. (6)

γ :

Kinematic viscosity of the fluid

δ :

Constant in (9) known as NDT parameter

σ :

Permeability parameter

η :

Similarity variable

θ :

Dimensionless temperature

μ :

Viscosity

ρ :

Density

ψ :

Stream function

∞:

Condition at infinity

′:

Derivative with respect to η

w :

Condition at the wall

References

  1. Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  2. Vafai K.: Handbook of Porous Media, vol. II. Marcel Dekker, New York (2004)

    Google Scholar 

  3. Bejan A., Kraus A.D.: Heat Transfer Handbook. Wiley, New York (2003)

    Google Scholar 

  4. Cheng P., Minkowycz W.J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a disk. J. Geophys. Res. 82, 2040–2044 (1977)

    Article  Google Scholar 

  5. Cheng P.: The influence of lateral mass flux on free convection boundary layers in saturated porous medium. Int. J. Heat Mass Transf. 20, 201–206 (1977)

    Article  Google Scholar 

  6. Johnson C.H., Cheng P.: Possible similarity solutions for free convection boundary layers adjacent to flat plates in porous media. Int. J. Heat Mass Transf. 21, 709–718 (1978)

    Article  MATH  Google Scholar 

  7. Merkin J.H.: Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J. Eng. Math. 14, 301–303 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Merkin J.H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20, 171–179 (1985)

    Article  MathSciNet  Google Scholar 

  9. Aly E.H., Elliott L., Ingham D.B.: Mixed convection boundary layer flow over a vertical surface embedded in a porous medium. Eur. J. Mech. B Fluids 22, 529–543 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Magyari E., Keller B.: Exact analytical solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium. Heat Mass Transf. 36, 109–116 (2000)

    Article  MathSciNet  Google Scholar 

  11. Vafai K., Tien C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  MATH  Google Scholar 

  12. Muralidhar K., Kulacki F.A.: Non-Darcy convection in a saturated horizontal porous annulus. ASME J. Heat Transf. 110, 133–139 (1988)

    Article  Google Scholar 

  13. Das S., Morsi Y.S.: Non-Darcian numerical modeling in domed enclosures filled with heat-generating porous media. Numer. Heat Transf. Part A 48, 149–164 (2005)

    Article  Google Scholar 

  14. Chen X.B., Yu P., Winoto S.H., Low H.T.: Free convection in a porous wavy cavity based on the Darcy–Brinkman– Forchheimer extended model. Numer. Heat Transf. Part A 52, 377–397 (2007)

    Article  Google Scholar 

  15. Bég O.A., Takhar H.S., Soundalgekar V.M., Prasad V.: Thermoconvective flow in a saturated isotropic, homogeneous, porous medium using Brinkman’s model: numerical study. Int. J. Numer. Meth. Heat Fluid Flow 8, 559–589 (1998)

    Article  MATH  Google Scholar 

  16. Takhar H.S., Chamkha A.J., Nath G.: Natural convection MHD flow on a continuous moving inclined surface embedded in a non-Darcian high-porosity medium. Indian J. Pure Appl. Math. 35, 1321–1342 (2004)

    Google Scholar 

  17. Barrow H., Rao T.L.S.: The effect of variable beta on free convection. Br. Chem. Eng. 16, 704–709 (1971)

    Google Scholar 

  18. Vajravelu K., Sastri K.S.: Fully developed laminar free convection flow between two parallel vertical walls-I. Int. J. Heat Mass Transf. 20, 655–660 (1977)

    Article  Google Scholar 

  19. Vajravelu K., Canon J.R., Leto J., Semmoum R., Nathan S., Draper M., Hammock D.: Non-linear convection at porous flat plate with application to heat transfer from a Dike. J. Math. Anal. Appl. 277, 609–623 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bhargava R., Takhar H.S., Rawat S., Bég T.A., Bég O.A.: Finite element solutions for non-Newtonian pulsatile flow in a non-Darcian porous medium conduit. Non-Linear Anal. Model. Control J. 12, 317–327 (2007)

    MATH  Google Scholar 

  21. Bhargava R., Rawat S., Takhar H.S., Bég O.A.: Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous media channel. Mecannica 42, 247–262 (2007)

    Article  MATH  Google Scholar 

  22. Takhar H.S., Bhargava R., Rawat S., Bég O.A., Bég T.A.: Finite element modeling of third grade viscoelastic flow in a non-Darcian porous medium. Int. J. Appl. Mech. Eng. 12, 215–233 (2007)

    Google Scholar 

  23. Nield D.A.: Comments on “A new model for viscous dissipation in porous media across a range of permeability values”. Transp. Porous Media 55, 253–254 (2004)

    Article  MathSciNet  Google Scholar 

  24. Nield D.A.: The modeling of viscous dissipation in a saturated porous medium. ASME J. Heat Transf. 129, 1459–1463 (2007)

    Article  Google Scholar 

  25. Bird R.B., Stewar W.E., Lightfoot E.N.: Transport Phenomena. Toppan, Tokyo (1960)

    Google Scholar 

  26. Streeter V.L.: Handbook of Fluid Dynamics, vol. 6. McGraw-Hill, New York (1961)

    Google Scholar 

  27. Barrow H., Rao T.L.S.: The effect of variable beta on free convection. Br. Chem. Eng. 16, 704–709 (1971)

    Google Scholar 

  28. Brown A.: The effect of laminar free convection heat transfer of the temperature dependence of the coefficient of volumetric expansion. J. Heat Transf. 97, 133–135 (1975)

    Article  Google Scholar 

  29. Cebeci T., Bradshaw P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1984)

    MATH  Google Scholar 

  30. Keller H.B.: Numerical Methods for Two-point Boundary Value Problems. Dover, New York (1992)

    Google Scholar 

  31. Press W.H., Teukolsky S.A., Vellering W.T., Flannery B.P.: Numerical Recipes in FORTRAN. Cambridge University Press, Cambridge (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.V., Vajravelu, K. & van Gorder, R.A. Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation. Acta Mech 220, 139–154 (2011). https://doi.org/10.1007/s00707-011-0474-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0474-2

Keywords