Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modified Yeoh model with improved equibiaxial loading predictions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on two sets of experimental data from the literature, one for vulcanized rubber and the other for a thermoplastic elastomer, the Yeoh model was found to underestimate the stress during equibiaxial loading. The Biderman model, whose strain energy density function expression differs from that of the Yeoh model by an additional term containing the second invariant, overestimates the stress in the mentioned loading mode leading to severe inaccuracies. For improved predictions, this work proposes the modification of the Yeoh model in which the residual strain energy density from equibiaxial loading is fitted to a term with dependence on the second invariant and thereafter adding the term to the original expression. The model constants and predictions were obtained by implementing the Levenberg–Marquardt algorithm and the Cauchy stress tensor equations, respectively, in Python codes. Both the coefficient of determination and the relative errors were utilized to quantify the accuracy of the model predictions. The modified model exhibited superior predictive capabilities particularly in equibiaxial loading where it reduced the average relative error from 22.07 to 6.09 and 27.25 to 10.39% for vulcanized rubber and thermoplastic elastomer data, respectively. For complete behavior, i.e., the average of the relative errors in the three loading modes, the modified version's value was half that of the Yeoh model. This demonstrated its suitability for predicting the multi-axial loading behavior of elastomer-based engineering components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Data available upon request from the corresponding author.

References

  1. Yuan, L., Gu, Z.-X., Yin, Z.-N., Xiao, H.: New compressible hyper-elastic models for rubberlike materials. Acta Mech. 226, 4059–4072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  MATH  Google Scholar 

  3. Muhr, A.H.: Modeling the stress–strain behavior of rubber. Rubber Chem. Technol. 78(3), 391–425 (2005)

    Article  Google Scholar 

  4. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci.: Part B: Polym. Phys. 35(12), 1919–1931 (1997)

    Article  Google Scholar 

  5. Bahreman, M., Darijani, H., Fooladi, M.: Constitutive modeling of isotropic hyperelastic materials using proposed phenomenological models in terms of strain invariants. Polym. Eng. Sci. 56(3), 299–308 (2016)

    Article  Google Scholar 

  6. Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Oxford University Press, Oxford (1975)

    Google Scholar 

  7. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Article  Google Scholar 

  9. Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63(5), 792–805 (1990)

    Article  Google Scholar 

  10. Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326(1567), 565–584 (1972)

    Article  MATH  Google Scholar 

  11. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  Google Scholar 

  12. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 4(2), 389–412 (1993)

    Article  MATH  Google Scholar 

  13. Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72(4), 602–632 (1999)

    Article  Google Scholar 

  14. Carroll, M.M.: A strain energy function for vulcanized rubbers. J. Elasticity 103, 173–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anssari-Benam, A., Bucchi, A.: A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. Int. J. Non-Linear Mech. 128, 103626 (2021)

    Article  MATH  Google Scholar 

  16. Yaya, K., Bechir, H.: A new hyper-elastic model for predicting multi-axial behaviour of rubber-like materials: formulation and computational aspects. Mech. Time-Dependent Mater. 22, 167–186 (2018)

    Article  Google Scholar 

  17. Mansouri, M.R., Darijani, H.: Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int. J. Solids Struct. 51, 4316–4326 (2014)

    Article  Google Scholar 

  18. Khajehsaeid, H., Arghavani, J., Naghdabadi, R.: A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. A/Solids 38, 144–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, Z., Mu, X., Du, F.: Modeling and verification of a new hyperelastic model for rubber-like materials. Math. Probl. Eng. 2019, 2832059 (2019)

    Google Scholar 

  20. Bien-Aimé, L.K.M., Blaise, B.B., Beda, T.: Characterization of hyperelastic deformation behavior of rubber-like materials. SN Appl. Sci. 2, 648 (2020)

    Article  Google Scholar 

  21. Külcü, İD.: A hyperelastic constitutive model for rubber-like materials. Arch. Appl. Mech. 90, 615–622 (2020)

    Article  Google Scholar 

  22. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    Article  Google Scholar 

  23. Fujikawa, M., Maeda, N., Yamabe, J., Koishi, M.: Performance evaluation of hyperelastic models for carbon-black–filled SBR vulcanizates. Rubber Chem. Technol. 93(1), 142–156 (2020)

    Article  Google Scholar 

  24. Seibert, D.J., Schöche, N.: Direct comparison of some recent rubber elasticity models. Rubber Chem. Technol. 73(2), 366–384 (2000)

    Article  Google Scholar 

  25. Hossain, M., Amin, A.F.M.S., Kabir, M.N.: Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study. J. Mech. Behav. Mater. 24(1–2), 11–24 (2015)

    Article  Google Scholar 

  26. Hohenberger, T.W., Windslow, R.J., Pugno, N.M., Busfield, J.J.C.: A constitutive model for both low and high strain nonlinearities in highly filled elastomers and implementation with user-defined material subroutines in Abaqus. Rubber Chem. Technol. 92(4), 653–686 (2019)

    Article  Google Scholar 

  27. Melly, S.K., Liu, L., Liu, Y., Leng, J.: Improved Carroll’s hyperelastic model considering compressibility and its finite element implementation. Acta. Mech. Sin. 37, 785–796 (2021)

    Article  MathSciNet  Google Scholar 

  28. Xiao, H.: An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials—part 1: incompressible deformations. Acta Mech. 223, 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, L., Jin, T., Yin, Z., Xiao, H.: A model for rubberlike elasticity up to failure. Acta Mech. 226, 1445–1456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cao, J., Ding, X.-F., Yin, Z.-N., Xiao, H.: Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation. Acta Mech. 228, 1165–1175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gajewski, M., Szczerba, R., Jemioło, S.: Modelling of elastomeric bearings with application of Yeoh hyperelastic material model. Procedia Eng. 111, 220–227 (2015)

    Article  Google Scholar 

  32. Renaud, C., Cros, J.-M., Feng, Z.-Q., Yang, B.: The Yeoh model applied to the modeling of large deformation contact/impact problems. Int. J. Impact Eng. 36, 659–666 (2009)

    Article  Google Scholar 

  33. Jaramillo, H.E.: Evaluation of the use of the Yeoh and Mooney-Rivlin functions as strain energy density functions for the ground substance material of the annulus fibrosus. Math. Probl. Eng. 2018, 1570142 (2018)

    Article  Google Scholar 

  34. Forsat, M.: Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method. Acta Mech. 231, 125–138 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)

    Article  MATH  Google Scholar 

  36. Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)

    Article  Google Scholar 

  37. Treloar, L.R.G.: Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chem. Technol. 17(4), 813–825 (1944)

    Article  Google Scholar 

  38. Zhao, F.: Continuum constitutive modeling for isotropic hyperelastic materials. Adv. Pure Math. 6, 571–582 (2016)

    Article  Google Scholar 

  39. Biderman, V.L.: Calculation of rubber parts. Rascheti na prochnost 40 (1958) (in Russian)

  40. Reddy, J.N.: An Introduction to Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  41. Bischoff, J.E., Arruda, E.M., Grosh, K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem. Technol. 74(4), 541–559 (2001)

    Article  Google Scholar 

  42. Bergström, J.: Mechanics of Solid Polymers: Theory and Computational Modeling. William Andrew, New York (2015)

    Google Scholar 

  43. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 243(865), 251–288 (1951)

    MATH  Google Scholar 

  44. Horgan, C.O., Murphy, J.G.: On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers. Int. J. Solids Struct. 46, 3078–3085 (2009)

    Article  MATH  Google Scholar 

  45. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004)

    Article  MATH  Google Scholar 

  46. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  47. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Flory, P.J.: Molecular theory of rubber elasticity. Polym. J. 17(1), 1–12 (1985)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11632005 and 11672086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwu Liu or Jinsong Leng.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melly, S.K., Liu, L., Liu, Y. et al. Modified Yeoh model with improved equibiaxial loading predictions. Acta Mech 233, 437–453 (2022). https://doi.org/10.1007/s00707-021-03105-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03105-2